Skip to main content

A Review of Research on Uranium Aerosol Formation Under Fire Conditions

  • Conference paper
  • First Online:
Environmental Pollution Governance and Ecological Remediation Technology (ICEPG 2022)

Part of the book series: Environmental Science and Engineering ((ESE))

Included in the following conference series:

Abstract

Uranium materials are widely used in the nuclear industry. Uranium-containing materials will release uranium aerosols under fire conditions. Uranium aerosol seriously harms the health of workers. This article summarizes the related research of uranium aerosol under fire conditions from the aspects of experimental device design, sample processing and analysis, parameter characterization and results, and generation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Antill JE, Peakall KA (1959) Kinetics of the oxidation of uranium by carbon dioxide. J Less-Common Metals 1(3):227–231

    Article  CAS  Google Scholar 

  • Baron PA, Willeke K (2006) Aerosol measurement: principles, techniques, and applications. Chemical Industry Press

    Google Scholar 

  • Carter RF, Stewart K (1971) On the oxide fume formed by the combustion of plutonium and uranium”. Inhaled Part 2(2):819

    CAS  Google Scholar 

  • Cheng YS, Kenoyer JL, Guilmette RA et al (2009) Physicochemical characterization of capstone depleted uranium aerosols II: particle size distributions as a function of time. Health Phys 96(3):266–275

    Article  CAS  Google Scholar 

  • Clark DK (2015) Characterization of respirable uranium aerosols from various uranium alloys in fire events. Aerosol Sci Technol 49(3):188–195

    Article  CAS  Google Scholar 

  • Distributions from Active Particle Sampling at the Los Alamos National Laboratory Uranium Foundry (2010) IOP Conference Series: Materials Science and Engineering

    Google Scholar 

  • DOE (1994) Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities

    Google Scholar 

  • Elder JC, Tinkle MC (1980) Oxidation of depleted uranium penetrators and aerosol dispersal at high temperatures

    Google Scholar 

  • Guilmette RA, Cheng YS (2009) Physicochemmical characterization of capstone depleted uranium aerosols IV: in vitro solubility analysis. Health Phys 96(3):292–305

    Article  CAS  Google Scholar 

  • Hanson WC, Elder JC, Ettinger HJ et al (1974) Particle size distribution of fragments from depleted uranium penetrators fired against armor plate targets

    Google Scholar 

  • Hansson E, Pettersson HBL, Fortin C et al (2017) Uranium aerosols at a nuclear fuel fabrication plant: Characterization using scanning electron microscopy and energy dispersive X-ray spectroscopy. Spectrochim Acta, Part B 131(2017):130–137

    Article  CAS  Google Scholar 

  • Hanyuan M (2021) Review of studies on generation of uranium aerosols under high temperature. J Ordnance Equipment Eng 06(2021):1–5

    Google Scholar 

  • Hinds W C. (1999) “Behavior and Measurement of Airbone Particles.” Aerosol Technology: Properties, (1999)

    Google Scholar 

  • Krupka KM, Parkhurst MA, Gold K et al (2009) Physicochemical characterization of capstone depleted uranium aerosols III: morphologic and chemical oxide analysis. Health Phys 96(3):276–291

    Article  CAS  Google Scholar 

  • Laul JC, Foppe TL, Mishima J (2006) Applicability of airborne release fraction and respirable fraction values to particulate toxic chemical material releases at DOE sites. J Chem Health Safety

    Google Scholar 

  • Lemma Di FG, Colle JY, Ernstberger M et al (2014a) Rades an experimental set-up for the characterization of aerosol release from nuclear and radioactive materials. J Aerosol Sci 70(2014):36–49

    Article  Google Scholar 

  • Lemma Di FG, Colle JY, Benes O et al (2014b) Chemistry studies for radioactive aerosol release in simulated severe accidents

    Google Scholar 

  • Lide DR, Haynes WMM (2010) CRC handbook of chemistry and physics

    Google Scholar 

  • Lu Z (2000) Introduction to aerosol science. Beijing Atomic Energy Press

    Google Scholar 

  • Megaw WJ, Chadwick RC, Wells AC et al (1961) The oxidation and release of iodine-131 from uranium slugs oxidizing in air and carbon dioxide. J Nuclear Energy Parts a/b Reactor Sci Technol 15(4):176–184

    Article  CAS  Google Scholar 

  • Mishima J, Parkhurst MA, Scherpelz RI (1985) Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    Google Scholar 

  • Prasad KV, Balbudhe AY, Srivastava GK et al (2010) Aerosol size distribution in a uranium processing and fuel fabrication facility. Radiat Prot Dosimetry 140(4):357–361

    Article  CAS  Google Scholar 

  • Rakitskaya EM, Panov AS (2000) The behavior of uranium dioxide in various gases. At Energ 89(5):890–894

    Article  CAS  Google Scholar 

  • Roszell LE, Hahn FF, Lee RB et al (2009) Accessing the renal toxicity of capstone depleted uranium oxides and other uranium compounds. Health Phys 96(3):343–351

    Article  CAS  Google Scholar 

  • Shui Y, Xiaoying Z, Fa Z et al (2003a) The research of physical and chemical properties of DU aerosol. Chin J Radiol Med Prot 05:317–319

    Google Scholar 

  • Shui Y, Xiaoying Z, Fa Z et al (2003b) Chemical composition analysis of aerosol oxides from depleted uranium. Chin J Radiol Med Prot 23(3):212–213

    Google Scholar 

  • Surya Narayana DS, Sundararajan AR, Harvey J (1994) Characterization of uranium oxide aerosols. J Aerosol Sci 25(5):909–922

    Article  Google Scholar 

  • Yan W, Bing L, Yangjun Z et al (2019) Research status and prospect of combustion mechanism of metal uranium and airborne release fraction. Environ Sci Manage 44(5):75–79

    Google Scholar 

  • Yang Y, Xiao S, Zhang Y et al (2013) In situ detection of trace aerosol uranium using a handheld photometer and solid reagent kit”. Anal Methods 5(18):5

    Article  Google Scholar 

  • Zhiyong L, Jintao W, Bin H et al (2021) Study on the formation mechanism of uranium aerosol under explosion load. Explosion and Shock Waves

    Google Scholar 

Download references

Acknowledgements

We are very grateful for the funding of the National Defense Advance Research Fund project. We are also very grateful to the Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Guo, M. (2023). A Review of Research on Uranium Aerosol Formation Under Fire Conditions. In: Zhang, J., Ruan, R., Bashir, M.J.K. (eds) Environmental Pollution Governance and Ecological Remediation Technology. ICEPG 2022. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-25284-6_53

Download citation

Publish with us

Policies and ethics