Skip to main content

Universum-Inspired Supervised Contrastive Learning

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

Mixup is an efficient data augmentation method which generates additional samples through respective convex combinations of original data points and labels. Although being theoretically dependent on data properties, Mixup is reported to perform well as a regularizer and calibrator contributing reliable robustness and generalization to neural network training. In this paper, inspired by Universum Learning which uses out-of-class samples to assist the target tasks, we investigate Mixup from a largely under-explored perspective - the potential to generate in-domain samples that belong to none of the target classes, that is, universum. We find that in the framework of supervised contrastive learning, universum-style Mixup produces surprisingly high-quality hard negatives, greatly relieving the need for a large batch size in contrastive learning. With these findings, we propose Universum-inspired Contrastive learning (UniCon), which incorporates Mixup strategy to generate universum data as g-negatives and pushes them apart from anchor samples of the target classes. Our approach not only improves Mixup with hard labels, but also innovates a novel measure to generate universum data. With a linear classifier on the learned representations, on Resnet-50, our method achieves 81.68% top-1 accuracy on CIFAR-100, surpassing the state of art by a significant margin of 5% with a much smaller batch size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  2. Carratino, L., Cissé, M., Jenatton, R., Vert, J.P.: On mixup regularization. arXiv preprint arXiv:2006.06049 (2020)

  3. Chapelle, O., Agarwal, A., Sinz, F., Schölkopf, B.: An analysis of inference with the universum. In: Advances in Neural Information Processing Systems, vol. 20 (2007)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Chen, X., Chen, S., Xue, H.: Universum linear discriminant analysis. Electron. Lett. 48(22), 1407–1409 (2012)

    Article  Google Scholar 

  6. Cherkassky, V., Dhar, S., Dai, W.: Practical conditions for effectiveness of the universum learning. IEEE Trans. Neural Netw. 22(8), 1241–1255 (2011)

    Article  Google Scholar 

  7. Chidambaram, M., Wang, X., Hu, Y., Wu, C., Ge, R.: Towards understanding the data dependency of mixup-style training. arXiv preprint arXiv:2110.07647 (2021)

  8. Chou, H.-P., Chang, S.-C., Pan, J.-Y., Wei, W., Juan, D.-C.: Remix: rebalanced Mixup. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12540, pp. 95–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_9

    Chapter  Google Scholar 

  9. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  10. Davoudian, A., Chen, L., Tu, H., Liu, M.: A workload-adaptive streaming partitioner for distributed graph stores. Data Sci. Eng. 6(2), 163–179 (2021)

    Article  Google Scholar 

  11. Erichson, N.B., Lim, S.H., Utrera, F., Xu, W., Cao, Z., Mahoney, M.W.: Noisymix: Boosting robustness by combining data augmentations, stability training, and noise injections. arXiv preprint arXiv:2202.01263 (2022)

  12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  13. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  14. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  17. Hou, J., Xu, J., Feng, R., Zhang, Y., Shan, F., Shi, W.: Cmc-cov19d: Contrastive mixup classification for covid-19 diagnosis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 454–461 (2021)

    Google Scholar 

  18. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  19. Kalantidis, Y., Sariyildiz, M.B., Pion, N., Weinzaepfel, P., Larlus, D.: Hard negative mixing for contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 21798–21809 (2020)

    Google Scholar 

  20. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  21. Kim, S., Lee, G., Bae, S., Yun, S.Y.: Mixco: Mix-up contrastive learning for visual representation. arXiv preprint arXiv:2010.06300 (2020)

  22. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  23. Lamb, A., Verma, V., Kannala, J., Bengio, Y.: Interpolated adversarial training: Achieving robust neural networks without sacrificing too much accuracy. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pp. 95–103 (2019)

    Google Scholar 

  24. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)

    Google Scholar 

  25. Van den Oord, A., Li, Y., Vinyals, O., et al.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.037482(3), 4 (2018)

  26. Qi, Z., Tian, Y., Shi, Y.: Twin support vector machine with universum data. Neural Netw. 36, 112–119 (2012)

    Article  MATH  Google Scholar 

  27. Shafahi, A., et al.: Adversarial training for free! In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  28. Shen, Y., Shen, Z., Wang, M., Qin, J., Torr, P., Shao, L.: You never cluster alone. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  29. Shen, Z., Liu, Z., Liu, Z., Savvides, M., Darrell, T., Xing, E.: Un-mix: Rethinking image mixtures for unsupervised visual representation learning. arXiv preprint arXiv:2003.05438 (2020)

  30. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.: On mixup training: Improved calibration and predictive uncertainty for deep neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  31. Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.: Inference with the universum. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 1009–1016 (2006)

    Google Scholar 

  32. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  33. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  34. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  35. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  36. Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., Zou, J.: How does mixup help with robustness and generalization? arXiv preprint arXiv:2010.04819 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songcan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, A., Chen, S. (2023). Universum-Inspired Supervised Contrastive Learning. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13422. Springer, Cham. https://doi.org/10.1007/978-3-031-25198-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25198-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25197-9

  • Online ISBN: 978-3-031-25198-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics