Skip to main content

Bubbles Dynamics in Liquid

  • Chapter
  • First Online:
Theory of Periodic Conjugate Heat Transfer

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 180 Accesses

Abstract

Many modern engineering processes involve various two-phase bubble flows. This pertains, in particular, to the process of vapor generation and condensation (heat and nuclear energy industry), distillation, and rectification (chemical engineering), as well as to various problems in refrigerating and cryogenic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98

    Article  MATH  Google Scholar 

  2. Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Ann Rev Fluid Mech 9:145–185

    Article  MATH  Google Scholar 

  3. d’Agostino L, Salvetti MV (2008) Fluid dynamics of cavitation and cavitating turbopumps. Springer, Vien, New York

    MATH  Google Scholar 

  4. Zudin YB (1992) Analog of the Rayleigh equation for the bubble dynamics in a tube. Inzh Fiz Zh 63(1):28–31

    Google Scholar 

  5. Zudin YB (1995) Calculation of the rise velocity of large gas bubbles. Inzh-Fiz Zh 68(1):13–17

    MathSciNet  Google Scholar 

  6. Zudin YB (2013) Analytical solution of the problem of the rise of a Taylor bubble. Phys Fluids 25(5):053302

    Google Scholar 

  7. Zudin YB (1998) Calculation of the drift velocity in bubbly flow in a vertical tube. J Eng Phys Thermophys 71(6):996–999

    Article  Google Scholar 

  8. Freeden W, Gutting M (2013) Special functions of mathematical (geo-)physics. Applied and numerical harmonic analysis. Springer, Basel

    Google Scholar 

  9. Klaseboer E, Khoo BC (2006) A modified Rayleigh-Plesset model for a nonspherically symmetric oscillating bubble with applications to boundary integral methods. Eng Anal Bound Elem 30(1):59–71

    Article  MATH  Google Scholar 

  10. Zudin YB, Isakov NS, Zenin VV (2014) Generalized Rayleigh equation for the bubble dynamics in a tube. J Eng Phys Thermophys 87(6):1487–1493

    Article  Google Scholar 

  11. Scripov VP (1974) Metastable liquids. John Wiley & Sons, New York

    Google Scholar 

  12. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton, New York

    Google Scholar 

  13. Perrot P (1998) A to Z of thermodynamics. Oxford University Press

    Google Scholar 

  14. Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  15. Horst JH, Kashchiev D (2008) Rate of two-dimensional nucleation: verifying classical and atomistic theories by Monte Carlo simulation. J Phys Chem B 112(29):8614–8618

    Article  Google Scholar 

  16. Sekine M, Yasuoka K, Kinjo T, Matsumoto M (2008) Liquid–vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method. Fluid Dyn Res 40:597–605

    Article  MATH  Google Scholar 

  17. Chao L, Xiaobo W, Hualing Z (2010) Molecular dynamics simulation of bubble nucleation in superheated liquid. In: Proceedings of the 14th international heat transfer conference IHTC14, August 7–13, Washington. IHTC14-22129

    Google Scholar 

  18. Griffiths DJ (2005) Introduction to quantum mechanics, 2nd ed. Prentice Hall International

    Google Scholar 

  19. Guénault AM (2003) Basic superfluids. Taylor & Francis, London

    MATH  Google Scholar 

  20. Cumberbatch E, Uno S, Abebe H (2006) Nano-scale MOSFET device modelling with quantum mechanical effects. Eur J Appl Math 17:465–489

    Article  MathSciNet  MATH  Google Scholar 

  21. Keith AC, Lazzati D (2011) Thermal fluctuations and nanoscale effects in the nucleation of carbonaceous dust grains. Mon Not R Astron Soc 410(1):685–693

    Article  Google Scholar 

  22. Zudin YB (1998) Calculation of the surface density of nucleation sites in nucleate boiling of a liquid. J Eng Phys Thermophys 71:178–183

    Article  Google Scholar 

  23. Zudin YB (1998) The distance between nucleate boiling sites. High Temp 36:662–663

    Google Scholar 

  24. Hu G, Ma Y, Liu Q (2021) Evaluation on coupling of wall boiling and population balance models for vertical gas-liquid subcooled boiling flow of first loop of nuclear power plant. Energies 14:7357. https://doi.org/10.3390/en14217357

    Article  Google Scholar 

  25. Prosperetti A, Plesset MS (1978) Vapor bubble growth in a superheated liquid. J Fluid Mech 85:349–368

    Google Scholar 

  26. Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

  27. Lee HS, Merte JH (1996) Spherical vapour bubble growth in uniformly superheated liquids. Int J Heat Mass Transf 39:2427–2447

    Article  MATH  Google Scholar 

  28. Scriven LE on the dynamics of phase growth. Chem Eng Sci 10(1/2):1–14

    Google Scholar 

  29. Avdeev AA (2014) Laws of vapor bubble growth in the superheated liquid volume (thermal growth scheme). High Temp 52(4):588–602

    Google Scholar 

  30. Labuntsov DA, Yagov VV (2007) Mechanics of two-phase systems, Moscow Power Energetic University (Publ.), Moscow. (in Russian)

    Google Scholar 

  31. Birkhoff G, Margulis R, Horning W (1958) Spherical bubble growth. Phys Fluids 1:201–204

    Article  MathSciNet  Google Scholar 

  32. Carslaw HS, Jaeger JC (1986) Conduction of heat in solids. Clarendon, London

    MATH  Google Scholar 

  33. McCue SW, Wu B, Hill JM (2008) Classical two-phase Stefan problem for spheres. Proc R Soc London Ser A Math Phys Eng Sci 464(2096):2055–2076

    Google Scholar 

  34. Plesset MS, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25:493–500

    Article  MathSciNet  MATH  Google Scholar 

  35. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, London

    MATH  Google Scholar 

  36. Frank FC (1950) Radially symmetric phase growth controlled by diffusion. Proc R Soc London Ser A Math Phys Eng. Sci 201(1067):586–599

    Google Scholar 

  37. Papac J, Helgadottir A, Ratsch C, Gibou FA (2013) Level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids. J Comput Phys 233:241–261

    Article  MathSciNet  Google Scholar 

  38. Shepherd JE, Sturtevant B (1982) Rapid evaporation at the superheat limit. J Fluid Mech 121:379–402

    Article  Google Scholar 

  39. Frost DL, Sturtevant B (1986) Effects of ambient pressure on the instabiluity of a liquid boiling explosively at the superheat limit. J Heat Transfer 108(2):418–424

    Article  Google Scholar 

  40. Frost DL (1988) Dynamics of explosive boiling of a droplet. Phys Fluids 31(9):2554–2561

    Article  Google Scholar 

  41. Labuntzov D, Kolchugin BA, Golovin VS, Zakharova EA, Vladimirova LN (1964) High speed camera investigation of bubble growth for saturated water boiling in a wide range of pressure variations. High Temp 2:446–453

    Google Scholar 

  42. Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic University (Publ.). Moscow. (in Russian)

    Google Scholar 

  43. Liao Y, Lucas D (2021) A review on numerical modelling of flashing flow with application to nuclear safety analysis. Appl Therm Eng 182:116002

    Article  Google Scholar 

  44. Liao Y, Krepper E, Lucas D (2019) A baseline closure concept for simulating bubbly flow with phase change: interfacial heat transfer coefficient. Nucl Eng Des 348:1–13

    Article  Google Scholar 

  45. Kolev NI (2007) Multiphase flow dynamics 2. Thermal and mechanical interactions, 3rd ed. Springer

    Google Scholar 

  46. Labuntsov DA, Yagov VV (1988) On the condition of vapor bubble departure during boiling in the region of low reduced pressures. High Temp 26:1233–1236

    Google Scholar 

  47. Zudin YB (2015) Binary schemes of vapor bubble growth. J Eng Phys Thermophys 88(3):575–586

    Article  Google Scholar 

  48. Zudin YB, Zenin VV (2016) Pressure blocking effect in the growing vapor bubble in a highly superheated liquid. J Eng Phys Thermophys 89(5):1141–1151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zudin, Y.B. (2023). Bubbles Dynamics in Liquid. In: Theory of Periodic Conjugate Heat Transfer. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-25167-2_10

Download citation

Publish with us

Policies and ethics