Skip to main content

Photovoltaic Devices and Photodetectors

  • Chapter
  • First Online:
Low-Dimensional Chalcohalide Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Photonic devices play the significant roles in different modern technologies, such as electrical power generation from solar radiation, signal processing, data transmission, biomedical imaging, and environmental sensing. In this chapter, the photovoltaic and photodetection properties of low-dimensional chalcohalide materials are reviewed. Recently, these compounds have been studied as the promising light or radiation absorbers due to their tunable bandgap energies, low effective masses of the charge carriers, high charge carrier mobilities, negligible toxicity, and a high level of defect tolerance. The first section of this chapter describes a ferroelectric-photovoltaic effect and its existence in antimony sulfoiodide (SbSI), one of the most investigated chalcohalide compound. Fabrication methods and photovoltaic performance of the solar cells based on antimony and bismuth chalcohalides are further presented in detail. In the next section, chalcohalide photodetectors and their figures of merit are discussed. At the end of the chapter, the applications of the chalcohalide compounds in detection of ionizing radiation are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Zhang, X. Su, M. Shen, Z. Dai, L. Zhang, X. He, W. Cheng, M. Cao, G. Zou, Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects. Sci. Rep. 3, 2109 (2013)

    Article  Google Scholar 

  2. X. Qi, K. Li, E. Sun, B. Song, D. Huo, J. Li, X. Wang, R. Zhang, B. Yang, W. Cao, Large photovoltaic effect with ultrahigh open-circuit voltage in relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J. Mater. Sci. Technol. 104, 119 (2022)

    Article  Google Scholar 

  3. X. Zhao, K. Song, H. Huang, W. Han, Y. Yang, Ferroelectric materials for solar energy scavenging and photodetectors. Adv. Opt. Mater. 10, 2101741 (2022)

    Article  CAS  Google Scholar 

  4. X. Han, Y. Ji, Y. Yang, Ferroelectric photovoltaic materials and devices. Adv. Funct. Mater. 32, 2109625 (2022)

    Article  CAS  Google Scholar 

  5. H. Li, F. Li, Z. Shen, S.T. Han, J. Chen, C. Dong, C. Chen, Y. Zhou, M. Wang, Photoferroelectric perovskite solar cells: principles advances and insights. Nano Today 37, 101062 (2021)

    Article  CAS  Google Scholar 

  6. I.E. Castelli, T. Olsen, Y. Chen, Towards photoferroic materials by design: recent progress and perspectives. JPhys Energy 2, 11001 (2020)

    Article  CAS  Google Scholar 

  7. H. He, Z. He, Z. Jiang, J. Wang, T. Liu, N. Wang, A controllable photoresponse and photovoltaic performance in Bi4Ti3O12 ferroelectric thin films. J. Alloys Compd. 694, 998 (2017)

    Article  CAS  Google Scholar 

  8. S. Pal, N.V. Sarath, K.S. Priya, P. Murugavel, A review on ferroelectric systems for next generation photovoltaic applications. J. Phys. D. Appl. Phys. 55, 283001 (2022)

    Article  Google Scholar 

  9. L. Huang, M. Wei, C. Gui, L. Jia, Ferroelectric photovoltaic effect and resistive switching behavior modulated by ferroelectric/electrode interface coupling. J. Mater. Sci. Mater. Electron. 31, 20667 (2020)

    Article  CAS  Google Scholar 

  10. Y. Li, J. Fu, X. Mao, C. Chen, H. Liu, M. Gong, H. Zeng, Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun. 12, 5896 (2021)

    Article  CAS  Google Scholar 

  11. A. Zenkevich, Y. Matveyev, K. Maksimova, R. Gaynutdinov, A. Tolstikhina, V. Fridkin, Giant Bulk Photovoltaic Effect in Thin Ferroelectric BaTiO3 Films. Phys. Rev. B—Condens. Matter Mater. Phys. 90, 161409 (2014)

    Google Scholar 

  12. W. Ji, K. Yao, Y.C. Liang, Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22, 1763 (2010)

    Article  CAS  Google Scholar 

  13. R. Inoue, S. Ishikawa, R. Imura, Y. Kitanaka, T. Oguchi, Y. Noguchi, M. Miyayama, Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals. Sci. Rep. 5, 14741 (2015)

    Article  CAS  Google Scholar 

  14. C.X. Qian, H.J. Feng, Q. Zhang, J. He, Z.X. Chen, M.Z. Wang, X.C. Zeng, Domain wall conduction in calcium-modified lead titanate for polarization tunable photovoltaic devices. Cell Reports Phys. Sci. 1, 100043 (2020)

    Article  Google Scholar 

  15. J. Seidel, D. Fu, S.Y. Yang, E. Alarcón-Lladó, J. Wu, R. Ramesh, J.W. Ager, Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011)

    Article  Google Scholar 

  16. Z. Tan et al., Thinning ferroelectric films for high-efficiency photovoltaics based on the Schottky barrier effect. NPG Asia Mater. 11, 20 (2019)

    Article  CAS  Google Scholar 

  17. A. Rivera-Calzada, F. Gallego, Y. Kalcheim, P. Salev, J. del Valle, I. Tenreiro, C. León, J. Santamaría, I.K. Schuller, Switchable optically active Schottky barrier in La0.7Sr0.3MnO3/BaTiO3/ITO ferroelectric tunnel junction. Adv. Electron. Mater. 7, 2100069 (2021)

    Google Scholar 

  18. J.M. Yan, K. Wang, Z.X. Xu, J.S. Ying, T.W. Chen, G.L. Yuan, T. Zhang, H.W. Zheng, Y. Chai, R.K. Zheng, Large ferroelectric-polarization-modulated photovoltaic effects in bismuth layered multiferroic/semiconductor heterostructure devices. J. Mater. Chem. C 9, 3287 (2021)

    Article  CAS  Google Scholar 

  19. R. Gao, W. Cai, G. Chen, X. Deng, X. Cao, C. Fu, Enhanced ferroelectric photovoltaic effect based on converging depolarization field. Mater. Res. Bull. 84, 93 (2016)

    Article  CAS  Google Scholar 

  20. Y. Gong, C. Chen, F. Zhang, X. He, H. Zeng, Q. Yang, Y. Li, Z. Yi, Ferroelectric photovoltaic and flexo-photovoltaic effects in (1 − x)(Bi0.5Na0.5)TiO3-xBiFeO3 systems under visible light. J. Am. Ceram. Soc. 103, 4363 (2020)

    Google Scholar 

  21. J. Jiang, Z. Chen, Y. Hu, Y. Xiang, L. Zhang, Y. Wang, G.C. Wang, J. Shi, Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 16, 894 (2021)

    Article  CAS  Google Scholar 

  22. M. Qin, K. Yao, Y.C. Liang, High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 93, 122904 (2008)

    Article  Google Scholar 

  23. Y. Yun, L. Mühlenbein, D.S. Knoche, A. Lotnyk, A. Bhatnagar, Strongly enhanced and tunable photovoltaic effect in ferroelectric-paraelectric superlattices. Sci. Adv. 7, eabe4206 (2021)

    Google Scholar 

  24. M. Nakamura, H. Hatada, Y. Kaneko, N. Ogawa, Y. Tokura, M. Kawasaki, Impact of electrodes on the extraction of shift current from a ferroelectric semiconductor SbSI. Appl. Phys. Lett. 113, 232901 (2018)

    Article  Google Scholar 

  25. B. Chen, J. Shi, X. Zheng, Y. Zhou, K. Zhu, S. Priya, Ferroelectric solar cells based on inorganic-organic hybrid perovskites. J. Mater. Chem. A 3, 7699 (2015)

    Article  CAS  Google Scholar 

  26. K.T. Butler, J.M. Frost, A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838 (2015)

    Article  CAS  Google Scholar 

  27. R. Guo, L. You, Y. Zhou, Z.S. Lim, X. Zou, L. Chen, R. Ramesh, J. Wang, Non-volatile memory based on the ferroelectric. Nat. Commun. 4, 1990 (2013)

    Article  Google Scholar 

  28. D. Li, D. Zheng, C. Jin, W. Zheng, H. Bai, High-performance photovoltaic readable ferroelectric nonvolatile memory based on La-doped BiFeO 3 films. ACS Appl. Mater. Interfaces 10, 19836 (2018)

    Article  CAS  Google Scholar 

  29. A. Makhort, R. Gumeniuk, J.F. Dayen, P. Dunne, U. Burkhardt, M. Viret, B. Doudin, B. Kundys, Photovoltaic-ferroelectric materials for the realization of all-optical devices. Adv. Opt. Mater. 10, 2102353 (2022)

    Article  CAS  Google Scholar 

  30. K. Mistewicz, M. Nowak, D. Stróż, A ferroelectric-photovoltaic effect in SbSI nanowires. Nanomaterials 9, 580 (2019)

    Google Scholar 

  31. R. Nitsche, W.J. Merz, Photoconduction in ternary V-VI-VII compounds. J. Phys. Chem. Solids 13, 154 (1960)

    Article  CAS  Google Scholar 

  32. K. Irie, Photovoltaic effect in ferroelectric and photoconductive SbSI. J. Phys. Soc. Japan 30, 1506 (1971)

    Article  CAS  Google Scholar 

  33. V.M. Fridkin, A.I. Rodin, Anomalous photovoltaic effect in ferroelectric SbSI and cubic piezoelectric ZnS. Phys. Status Solidi 61, 123 (1980)

    Article  CAS  Google Scholar 

  34. D.R. Akopov, A.I. Rodin, A.A. Grekov, Anomalous photovoltaic effect in AVBVICVII ferroelectrics. Ferroelectrics 26, 855 (1980)

    Article  CAS  Google Scholar 

  35. M. Nakamura, H. Hatada, Y. Kaneko, N. Ogawa, M. Sotome, Y. Tokura, M. Kawasaki, Non-local photocurrent in a ferroelectric semiconductor SbSI under local photoexcitation. Appl. Phys. Lett. 116, 122902 (2020)

    Article  CAS  Google Scholar 

  36. M. Sotome et al., Spectral dynamics of shift current in ferroelectric semiconductor SbSI. Proc. Natl. Acad. Sci. U. S. A. 116, 1929 (2019)

    Article  CAS  Google Scholar 

  37. K. Mistewicz, M. Nowak, A. Starczewska, M. Jesionek, T. Rzychoń, R. Wrzalik, A. Guiseppi-Elie, Determination of electrical conductivity type of SbSI nanowires. Mater. Lett. 182, 78 (2016)

    Article  CAS  Google Scholar 

  38. T. Sudersena Rao, A. Mansinch, Electrical and Optical Properties of Sbsi Films. Jpn. J. Appl. Phys. 24, 422 (1985)

    Google Scholar 

  39. R. Nie, H.S. Yun, M.J. Paik, A. Mehta, B.W. Park, Y.C. Choi, S. Il Seok, Efficient solar cells based on light-harvesting antimony sulfoiodide. Adv. Energy Mater. 8, 1701901 (2018)

    Google Scholar 

  40. M. Nowak, K. Mistewicz, A. Nowrot, P. Szperlich, M. Jesionek, A. Starczewska, Transient characteristics and negative photoconductivity of SbSI humidity sensor. Sensors Actuators A Phys. 210, 32 (2014)

    Article  CAS  Google Scholar 

  41. C. Wang, D. Cao, F. Zheng, W. Dong, L. Fang, X. Su, M. Shen, Photocathodic behavior of ferroelectric Pb(Zr, Ti)O3 films decorated with silver nanoparticles. Chem. Commun. 49, 3769 (2013)

    Article  CAS  Google Scholar 

  42. J.E. Spanier et al., Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator. Nat. Photonics 10, 611 (2016)

    Article  CAS  Google Scholar 

  43. S. Gupta, M. Tomar, V. Gupta, Ferroelectric photovoltaic properties of Ce and Mn codoped BiFeO3 thin film. J. Appl. Phys. 115, 14102 (2014)

    Article  Google Scholar 

  44. R. Gupta, M. Tomar, R.P. Tandon, V. Gupta, Impact of TiO2 buffer layer on the ferroelectric photovoltaic response of CSD grown PZT thick films. Appl. Phys. A Mater. Sci. Process. 127, 427 (2021)

    Google Scholar 

  45. A.M. Glass, D. Von Der Linde, T.J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233 (1974)

    Article  CAS  Google Scholar 

  46. M. Qin, K. Yao, Y.C. Liang, S. Shannigrahi, Thickness effects on photoinduced current in ferroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films. J. Appl. Phys. 101, 14104 (2007)

    Google Scholar 

  47. L. Fei, Y. Hu, X. Li, R. Song, L. Sun, H. Huang, H. Gu, H.L.W. Chan, Y. Wang, Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. ACS Appl. Mater. Interfaces 7, 3665 (2015)

    Article  CAS  Google Scholar 

  48. G. Gopal Khan, R. Das, N. Mukherjee, K. Mandal, Effect of metal doping on highly efficient photovoltaics and switchable photovoltage in bismuth ferrite nanotubes. Phys. Status Solidi—Rapid Res. Lett. 6, 312 (2012)

    Google Scholar 

  49. R.K. Katiyar, Y. Sharma, D. Barrionuevo, S. Kooriyattil, S.P. Pavunny, J.S. Young, G. Morell, B.R. Weiner, R.S. Katiyar, J.F. Scott, Ferroelectric photovoltaic properties in doubly substituted (Bi0.9La0.1)(Fe0.97Ta0.03)O3 thin films. Appl. Phys. Lett. 106, 82903 (2015)

    Google Scholar 

  50. L. Wu, A.R. Akbashev, A.A. Podpirka, J.E. Spanier, P.K. Davies, Infrared-to-ultraviolet light-absorbing BaTiO3-based ferroelectric photovoltaic materials. J. Am. Ceram. Soc. 102, 4188 (2019)

    Article  CAS  Google Scholar 

  51. Y.W. Cho, S.K. Choi, Y.M. Vysochanskii, Photovoltaic effect of Sn2P2S6 ferroelectric crystal and ceramics. J. Mater. Res. 16, 3317 (2001)

    Article  CAS  Google Scholar 

  52. F. Palazon, Metal chalcohalides: next generation photovoltaic materials? Sol. RRL 6, 2100829 (2022)

    Article  CAS  Google Scholar 

  53. Y.C. Choi, K.W. Jung, Recent progress in fabrication of antimony/bismuth chalcohalides for lead-free solar cell applications, Nanomaterials

    Google Scholar 

  54. S.J. Adjogri, E.L. Meyer, Chalcogenide perovskites and perovskite-based chalcohalide as photoabsorbers: a study of their properties, and potential photovoltaic applications. Materials

    Google Scholar 

  55. A. Zakutayev, J.D. Major, X. Hao, A. Walsh, J. Tang, T.K. Todorov, L.H. Wong, E. Saucedo, Emerging inorganic solar cell efficiency tables (version 2). J. Phys. Energy 3, 32003 (2021)

    Article  CAS  Google Scholar 

  56. C. Tablero, Optical properties of Sb(Se, Te)I and photovoltaic applications. J. Alloys Compd. 678, 18 (2016)

    Article  CAS  Google Scholar 

  57. R. Nishikubo, H. Kanda, I. García-Benito, A. Molina-Ontoria, G. Pozzi, A.M. Asiri, M.K. Nazeeruddin, A. Saeki, Optoelectronic and energy level exploration of bismuth and antimony-based materials for lead-free solar cells. Chem. Mater. 32, 6416 (2020)

    Article  CAS  Google Scholar 

  58. Y.T. Huang, S.R. Kavanagh, D.O. Scanlon, A. Walsh, R.L.Z. Hoye, Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology 32, 132004 (2021)

    Article  CAS  Google Scholar 

  59. K.T. Butler, S. McKechnie, P. Azarhoosh, M. Van Schilfgaarde, D.O. Scanlon, A. Walsh, Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells. Appl. Phys. Lett. 108, 112103 (2016)

    Article  Google Scholar 

  60. I. Kebaili, I. Boukhris, Z.A. Alrowaili, M.M. Abutalib, M.S. Al-Buriahi, Characterization of physicochemical properties of As2Se3–GeTe–AgI chalcohalide glasses for solar cell and IR applications: influence of adding AgI. J. Mater. Sci. Mater. Electron. 33, 800 (2022)

    Article  CAS  Google Scholar 

  61. F. Huang, L. Chen, Y. Han, J. Tang, Q. Nie, P. Zhang, Y. Xu, Visible to near-infrared downconversion in Tm3+/Yb3+ Co-doped chalcohalide glasses for solar spectra converter. Infrared Phys. Technol. 71, 159 (2015)

    Article  CAS  Google Scholar 

  62. S.R. Kavanagh, C.N. Savory, D.O. Scanlon, A. Walsh, Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn2SbS2I3. Mater. Horizons 8, 2709 (2021)

    Article  CAS  Google Scholar 

  63. S. Toso et al., Nanocrystals of lead chalcohalides: a series of kinetically trapped metastable nanostructures. J. Am. Chem. Soc. 142, 10198 (2020)

    Article  CAS  Google Scholar 

  64. T. Li, X. Wang, Y. Yan, D.B. Mitzi, Phase stability and electronic structure of prospective sb-based mixed sulfide and iodide 3D perovskite (CH3NH3)SbSI2. J. Phys. Chem. Lett. 9, 3829 (2018)

    Article  CAS  Google Scholar 

  65. R.E. Brandt et al., Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667 (2017)

    Article  CAS  Google Scholar 

  66. K. Choudhary, M. Bercx, J. Jiang, R. Pachter, D. Lamoen, F. Tavazza, Accelerated discovery of efficient solar cell materials using quantum and machine-learning methods. Chem. Mater. 31, 5900 (2019)

    Article  CAS  Google Scholar 

  67. D.W. Davies, K.T. Butler, J.M. Skelton, C. Xie, A.R. Oganov, A. Walsh, Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure. Chem. Sci. 9, 1022 (2018)

    Article  CAS  Google Scholar 

  68. Z. Ran, X. Wang, Y. Li, D. Yang, X.G. Zhao, K. Biswas, D.J. Singh, L. Zhang, Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials. Npj Comput. Mater. 4, 14 (2018)

    Article  Google Scholar 

  69. Y.C. Choi, K.W. Jung, One-step solution deposition of antimony selenoiodide films via precursor engineering for lead-free solar cell applications. Nanomaterials 11, 3206 (2021)

    Google Scholar 

  70. K.W. Jung, Y.C. Choi, Compositional engineering of antimony chalcoiodides via a two-step solution process for solar cell applications. ACS Appl. Energy Mater. 5, 5348 (2022)

    Google Scholar 

  71. Y.C. Choi, E. Hwang, D.H. Kim, Controlled growth of SbSI thin films from amorphous Sb2S3 for low-temperature solution processed chalcohalide solar cells. APL Mater. 6, 121108 (2018)

    Article  Google Scholar 

  72. D. Rusirawan, I. Farkas, Identification of model parameters of the photovoltaic solar cells. Energy Procedia 57, 39 (2014)

    Article  Google Scholar 

  73. A. Eibeck, D. Nurkowski, A. Menon, J. Bai, J. Wu, L. Zhou, S. Mosbach, J. Akroyd, M. Kraft, Predicting power conversion efficiency of organic photovoltaics: models and data analysis. ACS Omega 6, 23764 (2021)

    Article  CAS  Google Scholar 

  74. R. Nie, M. Hu, A. M. Risqi, Z. Li, S. Il Seok, Efficient and stable antimony selenoiodide solar cells. Adv. Sci. 8, 2003172 (2021)

    Google Scholar 

  75. K. Mistewicz et al., A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 517, 146138 (2020)

    Article  CAS  Google Scholar 

  76. R. Nie, S. Il Seok, Efficient antimony-based solar cells by enhanced charge transfer. Small Methods 4, 1900698 (2020)

    Google Scholar 

  77. A.K. Pathak, M.D. Prasad, S.K. Batabyal, One-dimensional SbSI crystals from Sb, S, and I mixtures in ethylene glycol for solar energy harvesting. Appl. Phys. A Mater. Sci. Process. 125, 213 (2019)

    Article  CAS  Google Scholar 

  78. R. Nie, J. Im, S. Il Seok, Efficient solar cells employing light-harvesting Sb0.67Bi0.33SI. Adv. Mater. 31, 1808344 (2019)

    Google Scholar 

  79. R. Nie, K.S. Lee, M. Hu, M.J. Paik, S. Il Seok, Heteroleptic tin-antimony sulfoiodide for stable and lead-free solar cells. Matter 3, 1701 (2020)

    Google Scholar 

  80. R. Nie, B. Kim, S.T. Hong, S. Il Seok, Nanostructured heterojunction solar cells based on Pb2SbS2I3: linking lead halide perovskites and metal chalcogenides. ACS Energy Lett. 3, 2376 (2018)

    Google Scholar 

  81. R. Nie, A. Mehta, B.W. Park, H.W. Kwon, J. Im, S. Il Seok, Mixed sulfur and iodide-based lead-free perovskite solar cells. J. Am. Chem. Soc. 140, 872 (2018)

    Google Scholar 

  82. J.A. Chang, S.H. Im, Y.H. Lee, H.J. Kim, C.S. Lim, J.H. Heo, S. Il Seok, Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12, 1863 (2012)

    Google Scholar 

  83. J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867 (2020)

    Article  CAS  Google Scholar 

  84. D.I. Kim, J.W. Lee, R.H. Jeong, J.H. Boo, A high-efficiency and stable perovskite solar cell fabricated in ambient air using a polyaniline passivation layer. Sci. Rep. 12, 697 (2022)

    Article  CAS  Google Scholar 

  85. M. Jeong et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615 (2020).

    Google Scholar 

  86. A.M. Ganose, S. Matsumoto, J. Buckeridge, D.O. Scanlon, Defect engineering of earth-abundant solar absorbers BiSI and BiSeI. Chem. Mater. 30, 3827 (2018)

    Article  CAS  Google Scholar 

  87. A.M. Ganose, K.T. Butler, A. Walsh, D.O. Scanlon, Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A 4, 2060 (2016)

    Article  CAS  Google Scholar 

  88. L.C. Lee, T.N. Huq, J.L. Macmanus-Driscoll, R.L.Z. Hoye, Research update: bismuth-based perovskite-inspired photovoltaic materials. APL Mater. 6, 84502 (2018)

    Article  Google Scholar 

  89. Y.C. Choi, E. Hwang, Controlled growth of BiSi nanorod-based films through a two-step solution process for solar cell applications. Nanomaterials

    Google Scholar 

  90. B. Yoo, D. Ding, J.M. Marin-Beloqui, L. Lanzetta, X. Bu, T. Rath, S.A. Haque, Improved charge separation and photovoltaic performance of BiI3 absorber layers by use of an in situ formed BiSI interlayer. ACS Appl. Energy Mater. 2, 7056 (2019)

    Article  CAS  Google Scholar 

  91. D. Tiwari, F. Cardoso-Delgado, D. Alibhai, M. Mombrú, D.J. Fermín, Photovoltaic performance of phase-pure orthorhombic BiSI thin-films. ACS Appl. Energy Mater. 2, 3878 (2019)

    Article  CAS  Google Scholar 

  92. T.N. Huq et al., Electronic structure and optoelectronic properties of bismuth oxyiodide robust against percent-level iodine-, oxygen-, and bismuth-related surface defects. Adv. Funct. Mater. 30, 1909983 (2020)

    Article  CAS  Google Scholar 

  93. S. Li, L. Xu, X. Kong, T. Kusunose, N. Tsurumach, Q. Feng, Enhanced photovoltaic performance of BiSCl solar cells through nanorod array. Chemsuschem 14, 3351 (2021)

    Article  CAS  Google Scholar 

  94. J. Xiong, Z. You, S. Lei, K. Zhao, Q. Bian, Y. Xiao, B. Cheng, Solution growth of BiSI nanorod arrays on a tungsten substrate for solar cell application. ACS Sustain. Chem. Eng. 8, 13488 (2020)

    Article  CAS  Google Scholar 

  95. R.L.Z. Hoye et al., Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI). Adv. Mater. 29, 1702176 (2017)

    Article  Google Scholar 

  96. N.T. Hahn, J.L. Self, C.B. Mullins, BiSI micro-rod thin films: efficient solar absorber electrodes? J. Phys. Chem. Lett. 3, 1571 (2012)

    Article  CAS  Google Scholar 

  97. N.T. Hahn, A.J.E. Rettie, S.K. Beal, R.R. Fullon, C.B. Mullins, N-BiSI thin films: selenium doping and solar cell behavior. J. Phys. Chem. C 116, 24878 (2012)

    Article  CAS  Google Scholar 

  98. S. Li, L. Xu, X. Kong, T. Kusunose, N. Tsurumachi, Q. Feng, Bi13S18X2-based solar cells (X=Cl, Br, I): photoelectric behavior and photovoltaic performance. Phys. Rev. Appl. 15, 34040 (2021)

    Article  CAS  Google Scholar 

  99. N. Pai et al., Silver bismuth sulfoiodide solar cells: tuning optoelectronic properties by sulfide modification for enhanced photovoltaic performance. Adv. Energy Mater. 9, 1803396 (2019)

    Article  Google Scholar 

  100. C. Zhang, S. Teo, Z. Guo, L. Gao, Y. Kamata, Z. Xu, T. Ma, Development of a mixed halide-chalcogenide bismuth-based perovskite MABiI2S with small bandgap and wide absorption range. Chem. Lett. 48, 249 (2019)

    Article  Google Scholar 

  101. H. Kunioku, M. Higashi, R. Abe, Lowerature synthesis of bismuth chalcohalides: candidate photovoltaic materials with easily, continuously controllable band gap. Sci. Rep. 6, 32664 (2016)

    Article  CAS  Google Scholar 

  102. P.V.K. Yadav, B. Ajitha, Y.A. Kumar Reddy, A. Sreedhar, Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: a review. Chemosphere 279, 130473 (2021)

    Google Scholar 

  103. Z. Li, K. Xu, F. Wei, Recent progress in photodetectors based on low-dimensional nanomaterials. Nanotechnol. Rev. 7, 393 (2018)

    Article  CAS  Google Scholar 

  104. H.J. Hu, W.L. Zhen, S.R. Weng, Y.D. Li, R. Niu, Z.L. Yue, F. Xu, L. Pi, C.J. Zhang, W.K. Zhu, Enhanced optoelectronic performance and photogating effect in quasi-one-dimensional BiSeI wires. Appl. Phys. Lett. 120, 201101 (2022)

    Article  CAS  Google Scholar 

  105. S. Farooq, T. Feeney, J.O. Mendes, V. Krishnamurthi, S. Walia, E. Della Gaspera, J. van Embden, High gain solution-processed carbon-free BiSI chalcohalide thin film photodetectors. Adv. Funct. Mater. 31, 2104788 (2021)

    Google Scholar 

  106. G. Chen, W. Li, Y. Yu, Q. Yang, Fast and low-temperature synthesis of one-dimensional (1D) single-crystalline SbSI microrod for high performance photodetector. RSC Adv. 5, 21859 (2015)

    Article  CAS  Google Scholar 

  107. L. Sun, C. Wang, L. Xu, J. Wang, X. Liu, X. Chen, G.C. Yi, SbSI Whisker/PbI2 flake mixed-dimensional van Der Waals heterostructure for photodetection. CrystEngComm 21, 3779 (2019)

    Article  CAS  Google Scholar 

  108. S. Ravishankar, C. Aranda, P.P. Boix, J.A. Anta, J. Bisquert, G. Garcia-Belmonte, Effects of frequency dependence of the external quantum efficiency of perovskite solar cells. J. Phys. Chem. Lett. 9, 3099 (2018)

    Article  CAS  Google Scholar 

  109. K.C. Gödel, U. Steiner, Thin film synthesis of SbSI micro-crystals for self-powered photodetectors with rapid time response. Nanoscale 8, 15920 (2016)

    Article  Google Scholar 

  110. J. Shen, X. Liu, C. Wang, J. Wang, B. Wu, X. Chen, X. Chen, G.C. Yi, Sbsi microrod based flexible photodetectors. J. Phys. D. Appl. Phys. 53, 345106 (2020)

    Article  CAS  Google Scholar 

  111. P. Liu, L. Yin, L. Feng, Y. Sun, H. Sun, W. Xiong, C. Xia, Z. Wang, Z. Liu, Controllable preparation of ultrathin 2D BiOBr crystals for high-performance ultraviolet photodetector. Sci. China Mater. 64, 189 (2021)

    Article  CAS  Google Scholar 

  112. Y. Liu, J. Yin, Z. Tan, M. Wang, J. Wu, Z. Liu, H. Peng, Electrical and photoresponse properties of inversion asymmetric topological insulator BiTeCl nanoplates. ChemNanoMat 3, 406 (2017)

    Article  CAS  Google Scholar 

  113. X. Yan, W.L. Zhen, H.J. Hu, L. Pi, C.J. Zhang, W.K. Zhu, High-performance visible light photodetector based on BiSeI single crystal. Chinese Phys. Lett. 38, 68103 (2021)

    Article  CAS  Google Scholar 

  114. Y. Purusothaman, N.R. Alluri, A. Chandrasekhar, S.J. Kim, Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy 50, 256 (2018)

    Article  CAS  Google Scholar 

  115. Y. Purusothaman, N.R. Alluri, S.J. Kim, Piezo-phototronic dependent enhanced charge transportation in SbSI micro rod photodetector, in 23rd Opto-electronics and Communications Conference. OECC 2018 (2018), pp. 1–2

    Google Scholar 

  116. K. Mistewicz, Recent advances in ferroelectric nanosensors: toward sensitive detection of gas, mechanothermal signals, and radiation. J. Nanomater. 2018, 2651056 (2018)

    Article  Google Scholar 

  117. M. Nowak, Bober, B. Borkowski, M. Kȩpińska, P. Szperlich, D. Stróz, M. Sozańska, Quantum efficiency coefficient for photogeneration of carriers in SbSI nanowires. Opt. Mater. (Amst). 35, 2208 (2013)

    Google Scholar 

  118. T. Liu et al., Pressure-enhanced photocurrent in one-dimensional SbSI via lone-pair electron reconfiguration. Materials 15, 3845 (2022)

    Google Scholar 

  119. W.D. Kulp, Ionizing radiation ionizing radiation detectors radioactivity detectors, in Encyclopedia of Sustainability Science and Technology. ed. by R.A. Meyers (Springer, New York, 2012), pp.5560–5572

    Chapter  Google Scholar 

  120. P.M. Johns, J.C. Nino, Room temperature semiconductor detectors for nuclear security. J. Appl. Phys. 126, 40902 (2019)

    Article  Google Scholar 

  121. T. Yang, F. Li, R. Zheng, Recent advances in radiation detection technologies enabled by metal-halide perovskites. Mater. Adv. 2, 6744 (2021)

    Article  Google Scholar 

  122. I. Aguiar, M. Mombrú, M.P. Barthaburu, H.B. Pereira, L. Fornaro, Influence of solvothermal synthesis conditions in BiSI nanostructures for application in ionizing radiation detectors. Mater. Res. Express 3, 25012 (2016)

    Article  Google Scholar 

  123. M.M. Frutos, M.E.P. Barthaburu, L. Fornaro, I. Aguiar, Bismuth chalcohalide-based nanocomposite for application in ionising radiation detectors. Nanotechnology 31, 225710 (2020)

    Article  CAS  Google Scholar 

  124. A.C. Wibowo, C.D. Malliakas, H. Li, C.C. Stoumpos, D.Y. Chung, B.W. Wessels, A.J. Freeman, M.G. Kanatzidis, An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: a new candidate for hard radiation detection. Cryst. Growth Des. 16, 2678 (2016)

    Article  CAS  Google Scholar 

  125. H. Li, F. Meng, C.D. Malliakas, Z. Liu, D.Y. Chung, B. Wessels, M.G. Kanatzidis, Mercury chalcohalide semiconductor Hg3Se2Br2 for hard radiation detection. Cryst. Growth Des. 16, 6446 (2016)

    Article  CAS  Google Scholar 

  126. Y. He et al., Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer. Cryst. Growth Des. 19, 2074 (2019)

    Article  CAS  Google Scholar 

  127. A.C. Wibowo, C.D. Malliakas, Z. Liu, J.A. Peters, M. Sebastian, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg. Chem. 52, 7045 (2013)

    Article  CAS  Google Scholar 

  128. S. Johnsen, Z. Liu, J.A. Peters, J.H. Song, S. Nguyen, C.D. Malliakas, H. Jin, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis, Thallium Chalcohalides for X-Ray and γ-Ray detection. J. Am. Chem. Soc. 133, 10030 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Mistewicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mistewicz, K. (2023). Photovoltaic Devices and Photodetectors. In: Low-Dimensional Chalcohalide Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-25136-8_5

Download citation

Publish with us

Policies and ethics