Skip to main content

Strategies for Incorporation of Chalcohalide Nanomaterials into the Functional Devices

  • Chapter
  • First Online:
Low-Dimensional Chalcohalide Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

  • 175 Accesses

Abstract

In the last decade, the outstanding optical, piezoelectric, pyroelectric, and photovoltaic properties of the chalcohalide nanomaterials have been demonstrated. The unique features of the one-dimensional antimony sulfoiodide (SbSI), antimony selenoiodide (SbSeI) and bismuth sulfoiodide (BiSI) make these nanomaterials attractive for application in different devices, such as photodetectors, solar cells, piezoelectric energy harvesters, pyroelectric nanogenerators, radiation detectors, and gas nanosensors. The chalcohalide nanomaterials can be incorporated into the functional devices using solution processing of the thin films, spin-coating deposition, films drop-casting, the compression of the nanowires under high pressure, hot pressing, and the alignment of the nanowires in the electric field. The main advantages and major limitations of the aforementioned processing methods are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Tufail Chaudhary, Thin film deposition: solution based approach, in Thin Films (IntechOpen, Rijeka, 2021), p. Ch. 10

    Google Scholar 

  2. R.M. Pasquarelli, D.S. Ginley, R. O’hayre, Solution processing of transparent conductors: from flask to film. Chem. Soc. Rev. 40, 5406 (2011)

    Google Scholar 

  3. M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano-Micro Lett. 9, 3 (2017)

    Article  Google Scholar 

  4. Y.C. Choi, E. Hwang, D.H. Kim, Controlled growth of SbSI thin films from amorphous Sb2S3 for low-temperature solution processed chalcohalide solar cells. APL Mater. 6, 121108 (2018)

    Article  Google Scholar 

  5. K.W. Jung, Y.C. Choi, Compositional engineering of antimony chalcoiodides via a two-step solution process for solar cell applications. ACS Appl. Energy Mater. (2021)

    Google Scholar 

  6. R. Nie, S. Il Seok, Efficient antimony-based solar cells by enhanced charge transfer. Small Methods 4, 1900698 (2020)

    Google Scholar 

  7. R. Nie, H.S. Yun, M.J. Paik, A. Mehta, B.W. Park, Y.C. Choi, S. Il Seok, Efficient solar cells based on light-harvesting antimony sulfoiodide. Adv. Energy Mater. 8, 1701901 (2018)

    Google Scholar 

  8. R. Nie, M. Hu, A.M. Risqi, Z. Li, S. Il Seok, Efficient and stable antimony selenoiodide solar cells. Adv. Sci. 8, 2003172 (2021)

    Google Scholar 

  9. Y.C. Choi, K.W. Jung, One-step solution deposition of antimony selenoiodide films via precursor engineering for lead-free solar cell applications. Nanomaterials 11, 3206 (2021)

    Google Scholar 

  10. Y.C. Choi, E. Hwang, Controlled growth of BiSI nanorod-based films through a two-step solution process for solar cell applications. Nanomaterials 9, 1650 (2019)

    Google Scholar 

  11. S. Farooq, T. Feeney, J.O. Mendes, V. Krishnamurthi, S. Walia, E. Della Gaspera, J. van Embden, High gain solution-processed carbon-free BiSI chalcohalide thin film photodetectors. Adv. Funct. Mater. 31, 2104788 (2021)

    Google Scholar 

  12. B. Yoo, D. Ding, J.M. Marin-Beloqui, L. Lanzetta, X. Bu, T. Rath, S.A. Haque, Improved charge separation and photovoltaic performance of BiI3 absorber layers by use of an in situ formed BiSI interlayer. ACS Appl. Energy Mater. 2, 7056 (2019)

    Article  CAS  Google Scholar 

  13. D. Tiwari, F. Cardoso-Delgado, D. Alibhai, M. Mombrú, D.J. Fermín, Photovoltaic performance of phase-pure orthorhombic BiSI thin-films. ACS Appl. Energy Mater. 2, 3878 (2019)

    Article  CAS  Google Scholar 

  14. V. Sugathan, B. Ghosh, P.C. Harikesh, V. Kotha, P. Vashishtha, T. Salim, A. Yella, N. Mathews, Synthesis of bismuth sulphoiodide thin films from single precursor solution. Sol. Energy 230, 714 (2021)

    Article  CAS  Google Scholar 

  15. R. Nie, J. Im, S. Il Seok, Efficient solar cells employing light-harvesting Sb0.67Bi0.33SI, Adv. Mater. 31, 1808344 (2019)

    Google Scholar 

  16. M.M. Frutos, M.E.P. Barthaburu, L. Fornaro, I. Aguiar, Bismuth chalcohalide-based nanocomposite for application in ionising radiation detectors. Nanotechnology 31, 225710 (2020)

    Article  CAS  Google Scholar 

  17. N.T. Hahn, A.J.E. Rettie, S.K. Beal, R.R. Fullon, C.B. Mullins, N-BiSI thin films: selenium doping and solar cell behavior. J. Phys. Chem. C 116, 24878 (2012)

    Article  CAS  Google Scholar 

  18. Y. Purusothaman, N.R. Alluri, A. Chandrasekhar, S.J. Kim, Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy 50, 256 (2018)

    Article  CAS  Google Scholar 

  19. K. Mistewicz et al., A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 517, 146138 (2020)

    Article  CAS  Google Scholar 

  20. T. Wu, B. Chen, Facile fabrication of porous conductive thermoplastic polyurethane nanocomposite films via solution casting. Sci. Rep. 7, 17470 (2017)

    Article  Google Scholar 

  21. M. El Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi, A. Qaiss, Piezoelectric β-polymorph formation and properties enhancement in graphene oxide—PVDF nanocomposite films. Appl. Surf. Sci. 258, 7668 (2012)

    Article  Google Scholar 

  22. N. Jouault, D. Zhao, S.K. Kumar, Role of casting solvent on nanoparticle dispersion in polymer nanocomposites. Macromolecules 47, 5246 (2014)

    Article  CAS  Google Scholar 

  23. M. D’Arienzo et al., SiO2/Ladder-like polysilsesquioxanes nanocomposite coatings: playing with the hybrid interface for tuning thermal properties and wettability. Coatings 10, 913 (2020)

    Google Scholar 

  24. A.P. Mathew, K. Oksman, Processing of Bionanocomposites: Solution Casting, in Handbook of Green Materials, Vol. 5 (WORLD SCIENTIFIC, 2014), pp. 35–52

    Google Scholar 

  25. K. Mistewicz, Pyroelectric nanogenerator based on an SbSI-TiO2 nanocomposite. Sensors 22, 69 (2022)

    Google Scholar 

  26. S. Narayanan, R.K. Pandey, Physical vapor deposition of antimony Sulpho-Iodide (SbSI) thin films and their properties, in IEEE International Symposium on Applications of Ferroelectrics (1994), pp. 309–311

    Google Scholar 

  27. C. Wang et al., SbSI nanocrystals: an excellent visible light photocatalyst with efficient generation of singlet oxygen. ACS Sustain. Chem. Eng. 6, 12166 (2018)

    Article  CAS  Google Scholar 

  28. K. Mistewicz, M. Kępińska, M. Nowak, A. Sasiela, M. Zubko, D. Stróż, Fast and efficient piezo/photocatalytic removal of methyl orange using SbSI nanowires. Materials 13, 4803 (2020)

    Google Scholar 

  29. K. Mistewicz, M. Nowak, D. Stróż, A. Guiseppi-Elie, Ferroelectric SbSI nanowires for ammonia detection at a low temperature. Talanta 189, 225 (2018)

    Article  CAS  Google Scholar 

  30. S. Manoharan, D. Kesavan, P. Pazhamalai, K. Krishnamoorthy, S.J. Kim, Ultrasound irradiation mediated preparation of antimony Sulfoiodide (SbSI) nanorods as a high-capacity electrode for electrochemical supercapacitors. Mater. Chem. Front. 5, 2303 (2021)

    Article  CAS  Google Scholar 

  31. K. Choi, J. Bang, I. kyu Moon, K. Kim, J. Oh, Enhanced photoelectrochemical efficiency and stability using nitrogen-doped TiO2 on a GaAs photoanode. J. Alloys Compd. 843, 155973 (2020)

    Google Scholar 

  32. K. Mistewicz, M. Jesionek, M. Nowak, M. Kozioł, SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery. Nano Energy 64, 103906 (2019)

    Article  CAS  Google Scholar 

  33. K. Mistewicz, A. Starczewska, M. Jesionek, M. Nowak, M. Kozioł, D. Stróż, Humidity dependent impedance characteristics of SbSeI nanowires. Appl. Surf. Sci. 513, 145859 (2020)

    Article  CAS  Google Scholar 

  34. B. Toroń, K. Mistewicz, M. Jesionek, M. Kozioł, D. Stróż, M. Zubko, Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires. Energy 212, 118717 (2020)

    Article  Google Scholar 

  35. K. Mistewicz, M. Jesionek, H.J. Kim, S. Hajra, M. Kozioł, Ł Chrobok, X. Wang, Nanogenerator for determination of acoustic power in ultrasonic reactors. Ultrason. Sonochem. 78, 105718 (2021)

    Article  CAS  Google Scholar 

  36. B. Toroń, K. Mistewicz, M. Jesionek, M. Kozioł, M. Zubko, D. Stróż, A New hybrid piezo/triboelectric SbSeI nanogenerator. Energy 238, 122048 (2022)

    Article  Google Scholar 

  37. A. Starczewska, K. Mistewicz, M. Kozioł, M. Zubko, D. Stróż, J. Dec, Interfacial polarization phenomena in compressed nanowires of SbSI. Materials

    Google Scholar 

  38. M. Nowak, P. Szperlich, Bober, J. Szala, G. Moskal, D. Stróz, Sonochemical preparation of SbSI Gel. Ultrason. Sonochem. 15, 709 (2008)

    Google Scholar 

  39. M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, A. Serghei, Electrode polarization vs. maxwell-wagner-sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J. Chem. Phys. 142, 194703 (2015)

    Google Scholar 

  40. N. Nishimura, H. Suzuki, M. Higashi, R. Abe, A pressure-assisted low temperature sintering of particulate bismuth chalcohalides BiSX (X = Br, I) for fabricating efficient photoelectrodes with porous structures. J. Photochem. Photobiol. A Chem. 413, 113264 (2021)

    Article  CAS  Google Scholar 

  41. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399 (2000)

    Article  CAS  Google Scholar 

  42. P. García-Sánchez, J.J. Arcenegui, H. Morgan, A. Ramos, Self-assembly of metal nanowires induced by alternating current electric fields. Appl. Phys. Lett. 106, 23110 (2015)

    Article  Google Scholar 

  43. Y. Cao, W. Liu, J. Sun, Y. Han, J. Zhang, S. Liu, H. Sun, J. Guo, A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology 17, 2378 (2006)

    Article  CAS  Google Scholar 

  44. B. Xie, H. Zhang, Q. Zhang, J. Zang, C. Yang, Q. Wang, M.Y. Li, S. Jiang, Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. J. Mater. Chem. A 5, 6070 (2017)

    Article  CAS  Google Scholar 

  45. D.V. Talapin, C.T. Black, C.R. Kagan, E.V. Shevchenko, A. Afzali, C.B. Murray, Alignment, electronic properties, doping, and on-chip growth of colloidal PbSe nanowires. J. Phys. Chem. C 111, 13244 (2007)

    Article  CAS  Google Scholar 

  46. S.Q. Li, Y.X. Liang, T.L. Guo, Z.X. Lin, T.H. Wang, Synthesis of vertically electric-field-aligned In2O3 nanowires. Mater. Lett. 60, 1492 (2006)

    Article  CAS  Google Scholar 

  47. H.E. Ruda, A. Shik, Principles of nanowire alignment in an electric field. J. Appl. Phys. 109, 64305 (2011)

    Article  Google Scholar 

  48. M. Nowak, Bober, B. Borkowski, M. Kȩpińska, P. Szperlich, D. Stróz, M. Sozańska, Quantum efficiency coefficient for photogeneration of carriers in SbSI nanowires, Opt. Mater. (Amst). 35, 2208 (2013)

    Google Scholar 

  49. Y. Garbovskiy, A.V. Emelyanenko, A. Glushchenko, Inverse “Guest-Host” effect: ferroelectric nanoparticles mediated switching of nematic liquid crystals. Nanoscale 12, 16438 (2020)

    Article  CAS  Google Scholar 

  50. K. Mistewicz, M. Nowak, A. Starczewska, M. Jesionek, T. Rzychoń, R. Wrzalik, A. Guiseppi-Elie, Determination of electrical conductivity type of SbSI nanowires. Mater. Lett. 182, 78 (2016)

    Article  CAS  Google Scholar 

  51. K. Mistewicz, M. Nowak, D. Stróz, R. Paszkiewicz, SbSI nanowires for ferroelectric generators operating under shock pressure. Mater. Lett. 180, 15 (2016)

    Article  CAS  Google Scholar 

  52. K. Mistewicz, M. Nowak, R. Wrzalik, J. Śleziona, J. Wieczorek, A. Guiseppi-Elie, Ultrasonic processing of SbSI nanowires for their application to gas sensors. Ultrasonics 69, 67 (2016)

    Article  CAS  Google Scholar 

  53. K. Mistewicz, M. Nowak, R. Paszkiewicz, A. Guiseppi-Elie, SbSI nanosensors: from gel to single nanowire devices. Nanoscale Res. Lett. 12, 97 (2017)

    Article  Google Scholar 

  54. K. Mistewicz, Recent advances in ferroelectric nanosensors: toward sensitive detection of gas, mechanothermal signals, and radiation. J. Nanomater. 2018, 2651056 (2018)

    Article  Google Scholar 

  55. K. Mistewicz, M. Nowak, D. Stróż, A ferroelectric-photovoltaic effect in SbSI nanowires, Nanomaterials 9, 580 (2019)

    Google Scholar 

  56. Dhananjay, J. Nagaraju, S.B. Krupanidhi, Off-centered polarization and ferroelectric phase transition in Li-Doped ZnO thin films grown by pulsed-laser ablation. J. Appl. Phys. 101, 104104 (2007)

    Google Scholar 

  57. A. Mansingh, K.N. Srivastava, B. Singh, Effect of surface capacitance on the dielectric behavior of ferroelectric lead germanate. J. Appl. Phys. 50, 4319 (1979)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Mistewicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mistewicz, K. (2023). Strategies for Incorporation of Chalcohalide Nanomaterials into the Functional Devices. In: Low-Dimensional Chalcohalide Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-25136-8_3

Download citation

Publish with us

Policies and ethics