Skip to main content

The Methods of Fabrication of the Chalcohalide Nanostructures

  • Chapter
  • First Online:
Low-Dimensional Chalcohalide Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter provides a comprehensive review on various fabrication methods of the low-dimensional chalcohalide nanostructures, such as mechanical milling of bulk crystals, liquid-phase exfoliation, vapor phase growth, hydro/solvothermal methods, synthesis under ultrasonic irradiation, microwave synthesis, laser/heat-induced crystallization, electrospinning, successive ionic layer adsorption and reaction (SILAR). A particular attention is paid to the hydrothermal, solvothermal, and sonochemical methods which are the most commonly used to synthesize the chalcohalide compounds. The chapter presents the preparation of pristine nanostructured chalcohalides as well as their composites and heterostructured materials. The parameters of the aforementioned techniques and their influence on the basic properties of the obtained products are discussed. The main advantages and limitations of the methods of chalcohalide nanomaterials preparation are also elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Sherif El-Eskandarany, A. Al-Hazza, L.A. Al-Hajji, N. Ali, A.A. Al-Duweesh, M. Banyan, F. Al-Ajmi, Mechanical milling: a superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials

    Google Scholar 

  2. S.Z.M. Murtaza, P. Vaqueiro, Rapid synthesis of chalcohalides by ball milling: preparation and characterisation of BiSI and BiSeI. J. Solid State Chem. 291, 121625 (2020)

    Article  CAS  Google Scholar 

  3. Z. Li, Q. Zhang, L. Wu, W. Gu, Y. Liu, Mechanochemical synthesis of BiSI and Bi19S27I3 semiconductor materials. Adv. Powder Technol. 30, 1985 (2019)

    Article  CAS  Google Scholar 

  4. A.V. Gomonnai, I.M. Voynarovych, A.M. Solomon, Y.M. Azhniuk, A.A. Kikineshi, V.P. Pinzenik, M. Kis-Varga, L. Daroczy, V.V. Lopushansky, X-Ray diffraction and raman scattering in SbSI nanocrystals. Mater. Res. Bull. 38, 1767 (2003)

    Article  CAS  Google Scholar 

  5. Z. Li et al., Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 14, 10976 (2020)

    Article  CAS  Google Scholar 

  6. D. Sahoo, B. Kumar, J. Sinha, S. Ghosh, S.S. Roy, B. Kaviraj, Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Sci. Rep. 10, 10759 (2020)

    Article  CAS  Google Scholar 

  7. J. Shen et al., Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 15, 5449 (2015)

    Article  CAS  Google Scholar 

  8. J.N. Coleman, Y. Nalawade, J. Pepper, A. Harvey, A. Griffin, D. Caffrey, A.G. Kelly, All-printed dielectric capacitors from high-permittivity, liquid-exfoliated BiOCl nanosheets. ACS Appl. Electron. Mater. 2, 3233 (2020)

    Article  Google Scholar 

  9. Y. Shi, J. Li, C. Mao, S. Liu, X. Wang, X. Liu, S. Zhao, X. Liu, Y. Huang, L. Zhang, Van der waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat. Commun. 12, 5923 (2021)

    Article  CAS  Google Scholar 

  10. H. Yu, H. Huang, K. Xu, W. Hao, Y. Guo, S. Wang, X. Shen, S. Pan, Y. Zhang, Liquid-phase exfoliation into monolayered BiOBr nanosheets for photocatalytic oxidation and reduction. ACS Sustain. Chem. Eng. 5, 10499 (2017)

    Article  CAS  Google Scholar 

  11. Y. Liu, J. Yin, Z. Tan, M. Wang, J. Wu, Z. Liu, H. Peng, Electrical and photoresponse properties of inversion asymmetric topological insulator BiTeCl nanoplates. ChemNanoMat 3, 406 (2017)

    Article  CAS  Google Scholar 

  12. C. Wang et al., Nonlinear optical response of SbSI nanorods dominated with direct band gaps. J. Phys. Chem. C 125, 15441 (2021)

    Article  CAS  Google Scholar 

  13. M. Malekzadeh, M.T. Swihart, Vapor-phase production of nanomaterials. Chem. Soc. Rev. 50, 7132 (2021)

    Article  CAS  Google Scholar 

  14. H. Peng, C.K. Chan, S. Meister, X.F. Zhang, Y. Cui, Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem. Mater. 21, 247 (2009)

    Article  CAS  Google Scholar 

  15. D. Hajra, R. Sailus, M. Blei, K. Yumigeta, Y. Shen, S. Tongay, Epitaxial synthesis of highly oriented 2D janus rashba semiconductor BiTeCl and BiTeBr layers. ACS Nano 14, 15626 (2020)

    Article  CAS  Google Scholar 

  16. J.Z. Xin, C.G. Fu, W.J. Shi, G.W. Li, G. Auffermann, Y.P. Qi, T.J. Zhu, X.B. Zhao, C. Felser, Synthesis and thermoelectric properties of rashba semiconductor BiTeBr with intensive texture. Rare Met. 37, 274 (2018)

    Article  CAS  Google Scholar 

  17. P.K. Ghosh, A.S. Bhalla, L.E. Cross, Preparation and electrical properties of thin films of antimony sulphur iodide (SbSI). Ferroelectrics 51, 29 (1983)

    Article  Google Scholar 

  18. K.C. Gödel, U. Steiner, Thin film synthesis of SbSI micro-crystals for self-powered photodetectors with rapid time response. Nanoscale 8, 15920 (2016)

    Article  Google Scholar 

  19. J. Varghese, C. O’Regan, N. Deepak, R.W. Whatmore, J.D. Holmes, Surface roughness assisted growth of vertically oriented ferroelectric SbSI nanorods. Chem. Mater. 24, 3279 (2012)

    Article  CAS  Google Scholar 

  20. O. Icten, Functional nanocomposites: promising candidates for cancer diagnosis and treatment, in Synthetic Inorganic Chemistry: New Perspectives, ed. by J.M. Hamilton (Elsevier, 2021), pp. 279–340

    Google Scholar 

  21. S. Li, L. Xu, X. Kong, T. Kusunose, N. Tsurumachi, Q. Feng, Bismuth chalcogenide iodides Bi13S18I2 and BiSI: solvothermal synthesis, photoelectric behavior, and photovoltaic performance. J. Mater. Chem. C 8, 3821 (2020)

    Article  CAS  Google Scholar 

  22. X. Wang, F. Zhang, Y. Yang, Y. Zhang, L. Liu, W. Lei, Controllable synthesis and photocatalytic activity of nano-BiOBr photocatalyst. J. Nanomater. 2020, 1013075 (2020)

    Article  Google Scholar 

  23. J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 134, 4473 (2012)

    Article  CAS  Google Scholar 

  24. G. Chen, W. Li, Y. Yu, Q. Yang, Fast and low-temperature synthesis of one-dimensional (1D) single-crystalline SbSI microrod for high performance photodetector. RSC Adv. 5, 21859 (2015)

    Article  CAS  Google Scholar 

  25. I. Cho, B.K. Min, S.W. Joo, Y. Sohn, One-dimensional single crystalline antimony sulfur iodide, SbSI. Mater. Lett. 86, 132 (2012)

    Article  CAS  Google Scholar 

  26. C. Wang, K. Tang, Q. Yang, B. Hai, G. Shen, C. An, W. Yu, Y. Qian, Synthesis of novel SbSI nanorods by a hydrothermal method. Inorg. Chem. Commun. 4, 339 (2001)

    Article  CAS  Google Scholar 

  27. R. Zhang, K. Zeng, T. Zhang, Enhanced visible-light-driven photocatalytic activity of Bi2WO6-BiSI Z-scheme heterojunction photocatalysts for tetracycline degradation. Int. J. Environ. Anal. Chem. 1 (2020)

    Google Scholar 

  28. N. Sharma, Z. Pap, S. Garg, K. Hernádi, Hydrothermal synthesis of BiOBr and BiOBr/CNT composites, their photocatalytic activity and the importance of early Bi6O6(OH)3(NO3)3·1.5H2O formation. Appl. Surf. Sci. 495, 143536 (2019)

    Google Scholar 

  29. B. Cui, W. An, L. Liu, J. Hu, Y. Liang, Synthesis of CdS/BiOBr composite and its enhanced photocatalyticdegradation for rhodamine. Appl. Surf. Sci. 319, 298 (2014)

    Article  CAS  Google Scholar 

  30. V.I. Popolitov, B.N. Litvin, A.N. Lobachev, Hydrothermal crystallization of semiconducting compounds of group AV BVI CVII (AV : Sb, Bi; BVI : S, Se, Te; CVII; I, Br, Cl). Phys. Status Solidi 3, K1 (1970)

    Article  CAS  Google Scholar 

  31. F. Demartin, C.M. Gramaccioli, I. Campostrini, Demicheleite-(I), BiSI, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineral. Mag. 74, 141 (2010)

    Article  CAS  Google Scholar 

  32. J. Hou, K. Jiang, M. Shen, R. Wei, X. Wu, F. Idrees, C. Cao, Micro and nano hierachical structures of BiOI/activated carbon for efficient visible-light-photocatalytic reactions. Sci. Rep. 7, 11665 (2017)

    Article  Google Scholar 

  33. A. Pancielejko, J. Łuczak, W. Lisowski, A. Zaleska-Medynska, P. Mazierski, Novel two-step synthesis method of thin film heterojunction of BiOBr/Bi2WO6 with improved visible-light-driven photocatalytic activity. Appl. Surf. Sci. 569, 151082 (2021)

    Article  CAS  Google Scholar 

  34. M. Guo, Z. Zhou, S. Yan, P. Zhou, F. Miao, S. Liang, J. Wang, X. Cui, Bi2WO6–BiOCl heterostructure with enhanced photocatalytic activity for efficient degradation of oxytetracycline. Sci. Rep. 10, 18401 (2020)

    Article  CAS  Google Scholar 

  35. Q. Zhao, Y. Xing, Z. Liu, J. Ouyang, C. Du, Synthesis and characterization of modified BiOCl and their application in adsorption of low-concentration dyes from aqueous solution. Nanoscale Res. Lett. 13, 69 (2018)

    Article  Google Scholar 

  36. T. Senasu, T. Chankhanittha, K. Hemavibool, S. Nanan, Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics. Catal. Today 384–386, 209 (2022)

    Article  Google Scholar 

  37. Y. Zhang, P. Cao, X. Zhu, B. Li, Y. He, P. Song, R. Wang, Facile construction of BiOBr ultra-thin nano-roundels for dramatically enhancing photocatalytic activity. J. Environ. Manage. 299, 113636 (2021)

    Article  CAS  Google Scholar 

  38. Y. Mi, H. Li, Y. Zhang, N. Du, W. Hou, Synthesis and photocatalytic activity of BiOBr nanosheets with tunable crystal facets and sizes. Catal. Sci. Technol. 8, 2588 (2018)

    Article  CAS  Google Scholar 

  39. E. Bárdos, V.A. Márta, S. Fodor, E.Z. Kedves, K. Hernadi, Z. Pap, Hydrothermal crystallization of bismuth oxychlorides (BiOCl) using different shape control reagents. Materials 14, 2261 (2021)

    Google Scholar 

  40. T. Senasu, T. Narenuch, K. Wannakam, T. Chankhanittha, S. Nanan, Solvothermally grown BiOCl catalyst for photodegradation of cationic dye and fluoroquinolone-based antibiotics. J. Mater. Sci. Mater. Electron. 31, 9685 (2020)

    Article  CAS  Google Scholar 

  41. Y. Li, J. Wang, H. Yao, L. Dang, Z. Li, Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J. Mol. Catal. A Chem. 334, 116 (2011)

    Article  CAS  Google Scholar 

  42. J. Xia, S. Yin, H. Li, H. Xu, L. Xu, Q. Zhang, Enhanced photocatalytic activity of Bismuth Oxyiodine (BiOI) porous microspheres synthesized via reactable ionic liquid-assisted solvothermal method. Colloids Surf A Physicochem. Eng. Asp. 387, 23 (2011)

    Article  CAS  Google Scholar 

  43. M.M. Frutos, M.E.P. Barthaburu, L. Fornaro, I. Aguiar, Bismuth chalcohalide-based nanocomposite for application in ionising radiation detectors. Nanotechnology 31, 225710 (2020)

    Article  CAS  Google Scholar 

  44. I. Aguiar, M. Mombrú, M.P. Barthaburu, H.B. Pereira, L. Fornaro, Influence of solvothermal synthesis conditions in BiSI nanostructures for application in ionizing radiation detectors. Mater. Res. Express 3, 25012 (2016)

    Article  Google Scholar 

  45. J. Lee, B.K. Min, I. Cho, Y. Sohn, Synthesis and characterization of 1-D BiSI and 2-D BiOI nanostructures. Bull. Korean Chem. Soc. 34, 773 (2013)

    Article  CAS  Google Scholar 

  46. C. Wang, K. Tang, Q. Yang, J. Hu, Y. Qian, Fabrication of BiTeI submicrometer hollow spheres. J. Mater. Chem. 12, 2426 (2002)

    Article  CAS  Google Scholar 

  47. C. Lu, W. Wu, H. Zhou, In Situ fabrication of BiOBr/BiFeWO6 heterojunction with excellent photodegradation activity under visible light. J. Solid State Chem. 303, 122465 (2021)

    Article  CAS  Google Scholar 

  48. E.M. El-Fawal, Visible light-driven BiOBr/Bi2S3@CeMOF heterostructured hybrid with extremely efficient photocatalytic reduction performance of nitrophenols: modeling and optimization. ChemistrySelect 6, 6904 (2021)

    Article  CAS  Google Scholar 

  49. Y. Peng, H. Qian, N. Zhao, Y. Li, Synthesis of a novel 1D/2D Bi2O2CO3–BiOI heterostructure and its enhanced photocatalytic activity. Catalysts 11, 1284 (2021)

    Google Scholar 

  50. H. Sun, X. Xiao, V. Celorrio, Z. Guo, Y. Hu, C. Kirk, N. Robertson, A Novel method to synthesize BiSI uniformly coated with RGO by chemical bonding and its application as a supercapacitor electrode material. J. Mater. Chem. A 9, 15452 (2021)

    Article  CAS  Google Scholar 

  51. H. Razavi-Khosroshahi, S. Mohammadzadeh, M. Hojamberdiev, S. Kitano, M. Yamauchi, M. Fuji, BiVO4/BiOX (X = F, Cl, Br, I) heterojunctions for degrading organic dye under visible light. Adv. Powder Technol. 30, 1290 (2019)

    Article  CAS  Google Scholar 

  52. J. Wu et al., Hydrothermal synthesis of carbon spheres—BiOI/BiOIO3 heterojunctions for photocatalytic removal of gaseous Hg0 under visible light. Chem. Eng. J. 304, 533 (2016)

    Article  CAS  Google Scholar 

  53. J. Wu, Y. Xie, Y. Ling, Y. Dong, J. Li, S. Li, J. Zhao, Synthesis of flower-like g-C3N4/BiOBr and enhancement of the activity for the degradation of bisphenol a under visible light irradiation. Front. Chem. 7, 649 (2019)

    Google Scholar 

  54. Y. Liu, Z. Hu, J.C. Yu, Photocatalytic degradation of ibuprofen on S-Doped BiOBr. Chemosphere 278, 130376 (2021)

    Article  CAS  Google Scholar 

  55. K.S. Suslick, W.B. McNamara, Y. Didenko, Hot spot conditions during multi-bubble cavitation, in Sonochemistry and sonoluminescence, ed. by L.A. Crum, T.J. Mason, J.L. Reisse, K.S. Suslick (Springer, Netherlands, Dordrecht, 1999), pp. 191–204

    Chapter  Google Scholar 

  56. X. Hangxun, B.W. Zeiger, K.S. Suslick, Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42, 2555 (2013)

    Article  Google Scholar 

  57. M.A. Dheyab, A.A. Aziz, M.S. Jameel, Recent advances in inorganic nanomaterials synthesis using sonochemistry: a comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. Molecules

    Google Scholar 

  58. M. Nowak et al., Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A Phys. 210, 119 (2014)

    Article  CAS  Google Scholar 

  59. P. Kwolek, K. Pilarczyk, T. Tokarski, J. Mech, J. Irzmański, K. Szaciłowski, Photoelectrochemistry of N-Type antimony sulfoiodide nanowires. Nanotechnology 26, 105710 (2015)

    Article  Google Scholar 

  60. M. Tasviri, Z. Sajadi-Hezave, SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 436, 174 (2017)

    Article  CAS  Google Scholar 

  61. A. Starczewska, M. Nowak, P. Szperlich, B. Toroń, K. Mistewicz, D. Stróz, J. Szala, Influence of humidity on impedance of SbSI gel. Sens. Actuators A Phys. 183, 34 (2012)

    Article  CAS  Google Scholar 

  62. K. Mistewicz, M. Kępińska, M. Nowak, A. Sasiela, M. Zubko, D. Stróż, Fast and efficient piezo/photocatalytic removal of methyl orange using SbSI nanowires. Materials 13, 4803 (2020)

    Google Scholar 

  63. K. Mistewicz et al., A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 517, 146138 (2020)

    Article  CAS  Google Scholar 

  64. S. Manoharan, D. Kesavan, P. Pazhamalai, K. Krishnamoorthy, S.J. Kim, Ultrasound irradiation mediated preparation of antimony Sulfoiodide (SbSI) nanorods as a high-capacity electrode for electrochemical supercapacitors. Mater. Chem. Front. 5, 2303 (2021)

    Article  CAS  Google Scholar 

  65. A.K. Pathak, M.D. Prasad, S.K. Batabyal, One-dimensional SbSI crystals from Sb, S, and I mixtures in ethylene glycol for solar energy harvesting. Appl. Phys. A Mater. Sci. Process. 125, 213 (2019)

    Article  CAS  Google Scholar 

  66. O. Gladkovskaya, I. Rybina, Y.K. Gun’Ko, A. Erxleben, G.M. O’Connor, Y. Rochev, Water-based ultrasonic synthesis of SbSI nanoneedles, Mater. Lett. 160, 113 (2015)

    Google Scholar 

  67. K. Mistewicz, M. Jesionek, M. Nowak, M. Kozioł, SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery. Nano Energy 64, 103906 (2019)

    Article  CAS  Google Scholar 

  68. K. Mistewicz, A. Starczewska, M. Jesionek, M. Nowak, M. Kozioł, D. Stróż, Humidity dependent impedance characteristics of SbSeI nanowires. Appl. Surf. Sci. 513, 145859 (2020)

    Article  CAS  Google Scholar 

  69. B. Toroń, K. Mistewicz, M. Jesionek, M. Kozioł, D. Stróż, M. Zubko, Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires. Energy 212, 118717 (2020)

    Article  Google Scholar 

  70. M. Nowak, B. Kauch, P. Szperlich, D. Stróz, J. Szala, T. Rzychoń, Bober, B. Toroń, A. Nowrot, Sonochemical preparation of SbS1-xSexI nanowires. Ultrason. Sonochem. 17, 487 (2010)

    Google Scholar 

  71. K. Mistewicz, Pyroelectric nanogenerator based on an SbSI-TiO2 nanocomposite. Sensors 22, 69 (2022)

    Google Scholar 

  72. S.J. Reese, D.H. Hurley, H.W. Rollins, Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation. Ultrason. Sonochem. 13, 283 (2006)

    Article  CAS  Google Scholar 

  73. G. Li, F. Qin, R. Wang, S. Xiao, H. Sun, R. Chen, BiOX (X=Cl, Br, I) nanostructures: mannitol-mediated microwave synthesis, visible light photocatalytic performance, and Cr(VI) removal capacity. J. Colloid Interface Sci. 409, 43 (2013)

    Article  CAS  Google Scholar 

  74. C. Deng, H. Guan, X. Tian, Novel Bi19S27Br3 superstructures: facile microwave-assisted aqueous synthesis and their visible light photocatalytic performance. Mater. Lett. 108, 17 (2013)

    Article  CAS  Google Scholar 

  75. K.Y. Shih, Y.L. Kuan, E.R. Wang, One-step microwave-assisted synthesis and visible-light photocatalytic activity enhancement of BiOBr/RGO nanocomposites for degradation of methylene blue. Materials

    Google Scholar 

  76. M. Barj, O.A. Mykaylo, D.I. Kaynts, O.V. Gorina, O.G. Guranich, V.M. Rubish, Formation and structure of crystalline inclusions in As2S3-SbSI and As2Se3-SbSI systems glass matrices. J. Non. Cryst. Solids 357, 2232 (2011)

    Article  CAS  Google Scholar 

  77. D.I. Kaynts, A.P. Shpak, V.M. Rubish, O.A. Mykaylo, O.G. Guranich, P.P. Shtets, P.P. Guranich, Formation of ferroelectric nanostructures in (As2S3)100–x(SbSI)x glassy matrix. Ferroelectrics 371, 28 (2008)

    Article  CAS  Google Scholar 

  78. D. Savytskii, B. Knorr, V. Dierolf, H. Jain, Challenges of CW laser-induced crystallization in a chalcogenide glass. Opt. Mater. Express 3, 1026 (2013)

    Article  Google Scholar 

  79. Y.M. Azhniuk, P. Bhandiwad, V.M. Rubish, P.P. Guranich, O.G. Guranich, A.V. Gomonnai, D.R.T. Zahn, Photoinduced changes in the structure of As2S3-based SbSI nanocrystal-containing composites studied by raman spectroscopy. Ferroelectrics 416, 113 (2011)

    Article  CAS  Google Scholar 

  80. Y.M. Azhniuk, A. Villabona, A.V. Gomonnai, V.M. Rubish, V.M. Marjan, O.O. Gomonnai, D.R.T. Zahn, Raman and AFM studies of (As2S3)0.45(SbSI)0.55 thin films and bulk glass. J. Non. Cryst. Solids 396397, 36 (2014)

    Google Scholar 

  81. Y.M. Azhniuk, V. Stoyka, I. Petryshynets, V.M. Rubish, O.G. Guranich, A.V. Gomonnai, D.R.T. Zahn, SbSI nanocrystal formation in As-Sb-S-I glass under laser beam. Mater. Res. Bull. 47, 1520 (2012)

    Article  CAS  Google Scholar 

  82. V.J. Babu, R.S.R. Bhavatharini, S. Ramakrishna, Electrospun BiOI nano/microtectonic plate-like structure synthesis and UV-light assisted photodegradation of ARS dye. RSC Adv. 4, 19251 (2014)

    Article  CAS  Google Scholar 

  83. Y. Zhang, S. Liu, Z. Xiu, Q. Lu, H. Sun, G. Liu, TiO2/BiOI heterostructured nanofibers: electrospinning-solvothermal two-step synthesis and visible-light photocatalytic performance investigation. J. Nanoparticle Res. 16, 2375 (2014)

    Article  Google Scholar 

  84. Q. Huang, G. Jiang, H. Chen, L. Li, Y. Liu, Z. Tong, W. Chen, Hierarchical nanostructures of BiOBr/AgBr on electrospun carbon nanofibers with enhanced photocatalytic activity. MRS Commun. 6, 61 (2016)

    Article  CAS  Google Scholar 

  85. X. Yang, X. Li, L. Zhang, J. Gong, Electrospun template directed molecularly imprinted nanofibers incorporated with BiOI nanoflake arrays as photoactive electrode for photoelectrochemical detection of triphenyl phosphate. Biosens. Bioelectron. 92, 61 (2017)

    Article  CAS  Google Scholar 

  86. S.S. Kale, R.S. Mane, H. Chung, M.Y. Yoon, C.D. Lokhande, S.H. Han, Use of successive ionic layer adsorption and reaction (SILAR) method for amorphous titanium dioxide thin films growth. Appl. Surf. Sci. 253, 421 (2006)

    Article  CAS  Google Scholar 

  87. A.A. Putri, S. Kato, N. Kishi, T. Soga, Angle dependence of synthesized BiOI prepared by dip coating and its effect on the photovoltaic performance. Jpn. J. Appl. Phys. 58, SAAD09 (2019)

    Google Scholar 

  88. A.A. Putri, S. Kato, N. Kishi, T. Soga, Relevance of precursor molarity in the prepared bismuth oxyiodide films by successive ionic layer adsorption and reaction for solar cell application. J. Sci. Adv. Mater. Devices 4, 116 (2019)

    Article  Google Scholar 

  89. A.A. Abuelwafa, R.M. Matiur, A.A. Putri, T. Soga, Synthesis, structure, and optical properties of the nanocrystalline Bismuth Oxyiodide (BiOI) for optoelectronic application, Opt. Mater. (Amst). 109, 110413 (2020)

    Google Scholar 

  90. N.A. Abdul-Manaf, A.H. Azmi, F. Fauzi, N.S. Mohamed, The effects of micro and macro structure on electronic properties of bismuth oxyiodide thin films. Mater. Res. Express 8, 96401 (2021)

    Article  CAS  Google Scholar 

  91. H. Jia, Y. Li, Y. Mao, D. Yu, W. He, Z. Zheng, Room temperature synthesis of BiOBr1-xIx thin films with tunable structure and conductivity type for enhanced photoelectric performance. RSC Adv. 10, 41755 (2020)

    Article  CAS  Google Scholar 

  92. M.J. Chang, H. Wang, H.L. Li, J. Liu, H.L. Du, Facile preparation of novel Fe2O3/BiOI hybrid nanostructures for efficient visible light photocatalysis. J. Mater. Sci. 53, 3682 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Mistewicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mistewicz, K. (2023). The Methods of Fabrication of the Chalcohalide Nanostructures. In: Low-Dimensional Chalcohalide Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-25136-8_2

Download citation

Publish with us

Policies and ethics