Skip to main content

Fuse and Attend: Generalized Embedding Learning for Art and Sketches

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13808))

Included in the following conference series:

  • 876 Accesses

Abstract

While deep Embedding Learning approaches have witnessed widespread success in multiple computer vision tasks, the state-of-the-art methods for representing natural images need not necessarily perform well on images from other domains, such as paintings, cartoons, and sketch. This is because of the huge shift in the distribution of data from across these domains, as compared to natural images. Domains like sketch often contain sparse informative pixels. However, recognizing objects in such domains is crucial, given multiple relevant applications leveraging such data, for instance, sketch to image retrieval. Thus, achieving an Embedding Learning model that could perform well across multiple domains is not only challenging, but plays a pivotal role in computer vision. To this end, in this paper, we propose a novel Embedding Learning approach with the goal of generalizing across different domains. During training, given a query image from a domain, we employ gated fusion and attention to generate a positive example, which carries a broad notion of the semantics of the query object category (from across multiple domains). By virtue of Contrastive Learning, we pull the embeddings of the query and positive, in order to learn a representation which is robust across domains. At the same time, to teach the model to be discriminative against examples from different semantic categories (across domains), we also maintain a pool of negative embeddings (from different categories). We show the prowess of our method using the DomainBed framework, on the popular PACS (Photo, Art painting, Cartoon, and Sketch) dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  2. Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. Adv. Neural Inf. Process. Syst. 24 (2011)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of International Conference on Machine Learning (ICML), pp. 1597–1607. PMLR (2020)

    Google Scholar 

  4. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2030 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: Proceedings of International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  6. Krueger, D., Caballero, E., Jacobsen, J.H., Zhang, A., Binas, J., Zhang, D., Le Priol, R., Courville, A.: Out-of-distribution generalization via risk extrapolation (rex). In: International Conference on Machine Learning. pp. 5815–5826. PMLR (2021)

    Google Scholar 

  7. Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (rex). In: International Conference on Machine Learning, pp. 5815–5826. PMLR (2021)

    Google Scholar 

  8. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  9. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  10. Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., Tao, D.: Deep domain generalization via conditional invariant adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 624–639 (2018)

    Google Scholar 

  11. Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap via style-agnostic networks, vol. 2, no. 7, p. 8. arXiv preprint arXiv:1910.11645 (2019)

  12. Parascandolo, G., Neitz, A., Orvieto, A., Gresele, L., Schölkopf, B.: Learning explanations that are hard to vary. In: International Conference on Learning Representations (2020)

    Google Scholar 

  13. Rame, A., Dancette, C., Cord, M.: Fishr: invariant gradient variances for out-of-distribution generalization. In: International Conference on Machine Learning, pp. 18347–18377. PMLR (2022)

    Google Scholar 

  14. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: on the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731 (2019)

  15. Shahtalebi, S., Gagnon-Audet, J.C., Laleh, T., Faramarzi, M., Ahuja, K., Rish, I.: Sand-mask: an enhanced gradient masking strategy for the discovery of invariances in domain generalization. arXiv preprint arXiv:2106.02266 (2021)

  16. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  17. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  18. Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6502–6509 (2020)

    Google Scholar 

  19. Zhang, M., Marklund, H., Gupta, A., Levine, S., Finn, C.: Adaptive risk minimization: a meta-learning approach for tackling group shift, vol. 8. arXiv preprint arXiv:2007.02931 (2020)

Download references

Acknowledgment

I would like to thank Professor Haris, MBZUAI, for the insightful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Kr Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dutta, U.K. (2023). Fuse and Attend: Generalized Embedding Learning for Art and Sketches. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. https://doi.org/10.1007/978-3-031-25085-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25085-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25084-2

  • Online ISBN: 978-3-031-25085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics