Skip to main content

Counterfactual Fairness for Facial Expression Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13805))

Included in the following conference series:

Abstract

Given the increasing prevalence of facial analysis technology, the problem of bias in these tools is becoming an even greater source of concern. Causality has been proposed as a method to address the problem of bias, giving rise to the popularity of using counterfactuals as a bias mitigation tool. In this paper, we undertake a systematic investigation of the usage of counterfactuals to achieve both statistical and causal-based fairness in facial expression recognition. We explore bias mitigation strategies with counterfactual data augmentation at the pre-processing, in-processing, and post-processing stages as well as a stacked approach that combines all three methods. At the in-processing stage, we propose using Siamese Networks to suppress the differences between the predictions on the original and the counterfactual images. Our experimental results on RAF-DB with counterfactuals added show that: (1) The in-processing method outperforms at the pre-processing and post-processing stages, in terms of accuracy, F1 score, statistical fairness and counterfactual fairness, and (2) stacking the pre-processing, in-processing and post-processing stages provides the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barocas, S., Hardt, M., Narayanan, A.: Fairness in machine learning. NIPS Tutor. 1, 2 (2017)

    Google Scholar 

  2. Binns, R.: Fairness in machine learning: Lessons from political philosophy. In: Conference on Fairness, Accountability and Transparency (2018)

    Google Scholar 

  3. Bromley, J., et al.: Signature verification using a “Siamese’’ time delay neural network. Int. J. Pattern Recogn. Artif. Intell. 7(04), 669–688 (1993)

    Article  Google Scholar 

  4. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR (2018)

    Google Scholar 

  5. Cheong, J., Kalkan, S., Gunes, H.: The hitchhiker’s guide to bias and fairness in facial affective signal processing: overview and techniques. IEEE Signal Process. Mag. 38(6), 39–49 (2021)

    Article  Google Scholar 

  6. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (2005)

    Google Scholar 

  7. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)

    Article  Google Scholar 

  8. Churamani, N., Kara, O., Gunes, H.: Domain-incremental continual learning for mitigating bias in facial expression and action unit recognition. arXiv preprint arXiv:2103.08637 (2021)

  9. Crawford, K.: Time to regulate AI that interprets human emotions. Nature 592(7853), 167–167 (2021)

    Article  Google Scholar 

  10. Dash, S., Balasubramanian, V.N., Sharma, A.: Evaluating and mitigating bias in image classifiers: a causal perspective using counterfactuals. In: WACV (2022)

    Google Scholar 

  11. Davani, A.M., Omrani, A., Kennedy, B., Atari, M., Ren, X., Dehghani, M.: Fair hate speech detection through evaluation of social group counterfactuals. arXiv preprint arXiv:2010.12779 (2020)

  12. Davani, A.M., Omrani, A., Kennedy, B., Atari, M., Ren, X., Dehghani, M.: Improving counterfactual generation for fair hate speech detection. In: Workshop on Online Abuse and Harms (WOAH) (2021)

    Google Scholar 

  13. Denton, E., Hutchinson, B., Mitchell, M., Gebru, T.: Detecting bias with generative counterfactual face attribute augmentation. arXiv e-prints, pp. arXiv-1906 (2019)

    Google Scholar 

  14. Dinan, E., Fan, A., Williams, A., Urbanek, J., Kiela, D., Weston, J.: Queens are powerful too: mitigating gender bias in dialogue generation. In: EMNLP (2020)

    Google Scholar 

  15. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226 (2012)

    Google Scholar 

  16. Ekman, R.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press, USA (1997)

    Google Scholar 

  17. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton, E.P., Roth, D.: A comparative study of fairness-enhancing interventions in machine learning. In: Conference on Fairness, Accountability, and Transparency (2019)

    Google Scholar 

  18. Gajane, P., Pechenizkiy, M.: On formalizing fairness in prediction with machine learning. arXiv preprint arXiv:1710.03184 (2017)

  19. Garcia, R., Wandzik, L., Grabner, L., Krueger, J.: The harms of demographic bias in deep face recognition research. In: Proceedings of International Conference on Biometrics (ICB), pp. 1–6 (2019)

    Google Scholar 

  20. Gunes, H., Schuller, B.: Categorical and dimensional affect analysis in continuous input: current trends and future directions. Image Vis. Comput. 31(2), 120–136 (2013)

    Article  Google Scholar 

  21. Hanna, A., Denton, E., Smart, A., Smith-Loud, J.: Towards a critical race methodology in algorithmic fairness. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 501–512 (2020)

    Google Scholar 

  22. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: NIPS (2016)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  24. Hoffman, A.: Where fairness fails: data, algorithms and the limits of antidiscrimination discourse. J. Inf. Commun. Soc. 22, 900–915 (2019)

    Article  Google Scholar 

  25. Howard, A., Zhang, C., Horvitz, E.: Addressing bias in machine learning algorithms: A pilot study on emotion recognition for intelligent systems. In: Proceedings of Advanced Robotics Social Impacts (ARSO) (2017)

    Google Scholar 

  26. Jain, N., Olmo, A., Sengupta, S., Manikonda, L., Kambhampati, S.: Imperfect imaganation: Implications of GANs exacerbating biases on facial data augmentation and snapchat face lenses. Artif. Intell. 304, 103652 (2022)

    Article  MATH  Google Scholar 

  27. Joo, J., Kärkkäinen, K.: Gender slopes: Counterfactual fairness for computer vision models by attribute manipulation. In: Workshop on Fairness, Accountability, Transparency and Ethics in Multimedia (2020)

    Google Scholar 

  28. Kamiran, F., Karim, A., Zhang, X.: Decision theory for discrimination-aware classification. In: International Conference on Data Mining (2012)

    Google Scholar 

  29. Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.: Avoiding discrimination through causal reasoning. In: NIPS, pp. 656–666 (2017)

    Google Scholar 

  30. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  31. Kusner, M., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: NIPS (2017)

    Google Scholar 

  32. Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In: CVPR (2017)

    Google Scholar 

  33. Liu, M., et al.: StGAN: a unified selective transfer network for arbitrary image attribute editing. In: CVPR (2019)

    Google Scholar 

  34. Loftus, J.R., Russell, C., Kusner, M.J., Silva, R.: Causal reasoning for algorithmic fairness. arXiv preprint arXiv:1805.05859 (2018)

  35. Lu, K., Mardziel, P., Wu, F., Amancharla, P., Datta, A.: Gender bias in neural natural language processing. In: Nigam, V., et al. (eds.) Logic, Language, and Security. LNCS, vol. 12300, pp. 189–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62077-6_14

    Chapter  MATH  Google Scholar 

  36. Maudslay, R.H., Gonen, H., Cotterell, R., Teufel, S.: It’s all in the name: mitigating gender bias with name-based counterfactual data substitution. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  37. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2019)

    Article  Google Scholar 

  38. Mehrabi, N., Naveed, M., Morstatter, F., Galstyan, A.: Exacerbating algorithmic bias through fairness attacks. In: AAAI (2021)

    Google Scholar 

  39. Nabi, R., Shpitser, I.: Fair inference on outcomes. In: AAAI (2018)

    Google Scholar 

  40. Ngxande, M., Tapamo, J., Burke, M.: Bias remediation in driver drowsiness detection systems using generative adversarial networks. IEEE Access 8, 55592–55601 (2020). https://doi.org/10.1109/ACCESS.2020.2981912

    Article  Google Scholar 

  41. Niu, Y., Tang, K., Zhang, H., Lu, Z., Hua, X.S., Wen, J.R.: Counterfactual VQA: a cause-effect look at language bias. In: CVPR (2021)

    Google Scholar 

  42. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  43. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  44. Salimi, B., Rodriguez, L., Howe, B., Suciu, D.: Interventional fairness: causal database repair for algorithmic fairness. In: International Conference on Management of Data (2019)

    Google Scholar 

  45. Sariyanidi, E., Gunes, H., Cavallaro, A.: Automatic analysis of facial affect: a survey of registration, representation, and recognition. IEEE TPAMI 37(6), 1113–1133 (2014)

    Article  Google Scholar 

  46. Verma, S., Rubin, J.: Fairness definitions explained. In: International Workshop on Software Fairness (Fairware), pp. 1–7. IEEE (2018)

    Google Scholar 

  47. Wang, W., Feng, F., He, X., Zhang, H., Chua, T.S.: Clicks can be cheating: counterfactual recommendation for mitigating clickbait issue. In: ACM SIGIR Conference on Research and Development in Information Retrieval (2021)

    Google Scholar 

  48. Wong, A.: Mitigating gender bias in neural machine translation using counterfactual data. M.A. thesis, City University of New York (2020)

    Google Scholar 

  49. Xu, T., White, J., Kalkan, S., Gunes, H.: Investigating bias and fairness in facial expression recognition. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12540, pp. 506–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_35

    Chapter  Google Scholar 

  50. Zafar, M.B., Valera, I., Rogriguez, M.G., Gummadi, K.P.: Fairness constraints: mechanisms for fair classification. In: Artificial Intelligence and Statistics, pp. 962–970. PMLR (2017)

    Google Scholar 

Download references

Acknowledgement

J. Cheong is supported by the Alan Turing Institute doctoral studentship and the Cambridge Commonwealth Trust. H. Gunes’ work is supported by the EPSRC under grant ref. EP/R030782/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaee Cheong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheong, J., Kalkan, S., Gunes, H. (2023). Counterfactual Fairness for Facial Expression Recognition. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics