Skip to main content

Using Moffat Profiles to Register Astronomical Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

The accurate registration of astronomical images without a world coordinate system or authoritative catalog is useful for visually enhancing the spatial resolution of multiple images containing the same target. Increasing the resolution of images through super-resolution (SR) techniques can improve the performance of commodity optical hardware, allowing more science to be done with cheaper equipment. Many SR techniques rely on the accurate registration of input images, which is why this work is focused on accurate star finding and registration. In this work, synthetic star field frames are used to explore techniques involving star detection, matching, and transform-fitting. Using Moffat stellar profiles for stars, non-maximal suppression for control-point finding, and gradient descent for point finding optimization, we are able to obtain more accurate transformation parameters than that provided other modern algorithms, e.g., AstroAlign. To validate that we do not over-fit our method to our synthetic images, we use real telescope images and attempt to recover the transformation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anuta, P.E.: Spatial registration of multispectral and multitemporal digital imagery using fast fourier transform techniques. IEEE Trans. Geosci. Electron. 8(4), 353–368 (1970). https://doi.org/10.1109/TGE.1970.271435

    Article  Google Scholar 

  2. Bannore, V.: Iterative-Interpolation Super-Resolution Image Reconstruction, A Computationally Efficient Technique. Studies in Computational Intelligence, pp. 77–91 (2009). https://doi.org/10.1007/978-3-642-00385-1_5

  3. Beroiz, M., Cabral, J., Sanchez, B.: Astroalign: a python module for astronomical image registration. Astron. Comput. 32, 100384 (2020). https://doi.org/10.1016/j.ascom.2020.100384

    Article  Google Scholar 

  4. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  5. Gómez, J.L., et al.: Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron. I. Imaging BL Lacertae at 21 microarcsecond resolution. arXiv (2015)

    Google Scholar 

  6. Greisen, E.W., Calabretta, M.R.: Representations of world coordinates in fits. Astron. Astrophys. 395(3), 1061–1075 (2002). https://doi.org/10.1051/0004-6361:20021326

  7. Gural, P.S., Larsen, J.A., Gleason, A.E.: Matched filter processing for asteroid detection. Astron. J. 130(4), 1951–1960 (2005). https://doi.org/10.1086/444415

    Article  Google Scholar 

  8. Gural, P.S., Otto, P.R., Tedesco, E.F.: Moving object detection using a parallax shift vector algorithm. Publ. Astron. Soc. Pac. 130(989), 074504 (2018). https://doi.org/10.1088/1538-3873/aac1ff

    Article  Google Scholar 

  9. Keating, T.J., Wolf, P.R., Scarpace, F.: An improved method of digital image correlation. Photogramm. Eng. Remote Sens. 41, 993–1002 (1975)

    Google Scholar 

  10. King, B.: 9,096 stars in the sky - is that all? (2014). https://skyandtelescope.org/astronomy-blogs/how-many-stars-night-sky-09172014/

  11. King, B.: The eyes have it - deep-sky observing without equipment (2018). https://skyandtelescope.org/observing/deep-sky-naked-eye/

  12. Lang, D., Hogg, D.W., Mierle, K., Blanton, M., Roweis, S.: Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 139(5), 1782–1800 (2010). https://doi.org/10.1088/0004-6256/139/5/1782

  13. Li, Z., Peng, Q., Bhanu, B., Zhang, Q., He, H.: Super resolution for astronomical observations. Astrophys. Space Sci. 363(5), 1–15 (2018). https://doi.org/10.1007/s10509-018-3315-0

    Article  Google Scholar 

  14. Loke, S.C.: Astronomical image acquisition using an improved track and accumulate method. IEEE Access 5, 9691–9698 (2017). https://doi.org/10.1109/access.2017.2700162

    Article  Google Scholar 

  15. Mandel, J., Beezley, J., Coen, J., Kim, M.: Data assimilation for wildland fires. IEEE Control. Syst. 29(3), 47–65 (2009). https://doi.org/10.1109/mcs.2009.932224

    Article  MathSciNet  MATH  Google Scholar 

  16. Marois, C., Macintosh, B., Véran, J.P.: Exoplanet imaging with LOCI processing: photometry and astrometry with the new SOSIE pipeline. In: Adaptive Optics Systems II, pp. 77361J–77361J-12 (2010). https://doi.org/10.1117/12.857225

  17. Moffat, A.F.J.: A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry. Astron. Astrophys. (1969). https://ui.adsabs.harvard.edu/abs/1969A &A....3.455M

  18. Rieke, G.H., et al.: The mid-infrared instrument for the James Webb space telescope, VII: the MIRI detectors. Publ. Astron. Soc. Pac. 127(953), 665–674 (2015). https://doi.org/10.1086/682257

    Article  Google Scholar 

  19. Shahhosseini, S., Rezaie, B., Emamian, V.: Sequential image registration for astronomical images. In: 2012 IEEE International Symposium on Multimedia, pp. 314–317 (2012). https://doi.org/10.1109/ISM.2012.65

  20. Stahl, H.P.: Survey of cost models for space telescopes. Opt. Eng. 49(5), 053005–053005-8 (2010). https://doi.org/10.1117/1.3430603

  21. Stone, E., Bolte, M.: Development of the thirty-meter telescope project. Curr. Sci. 113(04), 628–630 (2017). https://doi.org/10.18520/cs/v113/i04/628-630

  22. Tabur, V.: Fast algorithms for matching CCD images to a stellar catalogue. Publ. Astron. Soc. Aust. 24(4), 189–198 (2007). https://doi.org/10.1071/AS07028

  23. Trujillo, I., Aguerri, J., Cepa, J., Gutiérrez, C.: The effects of seeing on Sérsic profiles - II. The Moffat PSF. Mon. Not. R. Astron. Soc. 328(3), 977–985 (2001). https://doi.org/10.1046/j.1365-8711.2001.04937.x

  24. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003). https://doi.org/10.1016/s0262-8856(03)00137-9

    Article  Google Scholar 

Download references

Acknowledgements

The material is based upon work supported by NASA under award number 80GSFC21M0002 and by a UMBC Undergraduate Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schuckman, M., Prouty, R., Chapman, D., Engel, D. (2023). Using Moffat Profiles to Register Astronomical Images. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics