Skip to main content

Monitoring System Based on an IoT Platform for an AFPM Generator

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2022)

Abstract

In the present work, a monitoring platform is made for an Axial Flow Permanent Magnet (AFPM) Generator without magnetic core, the objective is to permanently monitor the values that come from the generator, where the generator variables have been acquired through an open source development board called Arduino MEGA, which sends the data to a Raspberry PI, where they are displayed and stored so that they can be processed. The variables are displayed using the graphical node-red environment that offers a very eye-catching dashboard, which will be displayed on a 7 in. liquid-crystal display screen. All the data obtained is stored in a database that will allow its use for specific purposes. The monitoring platform has been built with the ability to monitor the speed of the rotors, the voltage and the current of a phase and thus be able to process the total power supplied by the generator. As a result, the monitoring system is a promise component for Pico Hydro power station to control the power all the time provided by the Axial Flow Permanent Magnet Generator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnaghi, P., Sheth, A., Henson, C.: From data to actionable knowledge: big data challenges in the web of things. IEEE Intell. Syst. 28(6), 6–11 (2013)

    Article  Google Scholar 

  2. Rayes, A., Salam, S.: Internet of Things From Hype to Reality. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99516-8

    Book  Google Scholar 

  3. Murata, S., Matsumoto, N., Yoshida, N.: IoT actuator networks based on inverse directed diffusion. J. Computations Model. 12(3), 13–23 (2022)

    Article  Google Scholar 

  4. Bekri, W., Layeb, T., Rihab, J.M.A.L., Fourati, L.C.: Intelligent IoT systems: security issues, attacks, and countermeasures. In: 2022 International Wireless Communications and Mobile Computing (IWCMC), pp. 231–236. IEEE (2022)

    Google Scholar 

  5. Proposal for a Low Cost Platform Based on the Internet of Things for Smart Agriculture. http://investigacion.utmachala.edu.ec/revistas/index.php/Cundos/article/view/462. Accessed 14 Nov 2022

  6. Herrero, R.: Fundamentals of IoT Communication Technologies. TTE, Springer, Cham (2022). https://doi.org/10.1007/978-3-030-70080-5

    Book  Google Scholar 

  7. Zrelli, A.: Hardware, software platforms, operating systems and routing protocols for Internet of Things applications. Wireless Pers. Commun. 122(4), 3889–3912 (2022)

    Article  Google Scholar 

  8. Gayathri, A., et al.: Cooperative and feedback based authentic routing protocol for energy efficient IoT systems. Concurrency Comput. Pract. Experience 34(11), e6886 (2022)

    Google Scholar 

  9. Sreedevi, A.G., Harshitha, T.N., Sugumaran, V., Shankar, P.: Application of cognitive computing in healthcare, cybersecurity, big data and IoT: a literature review. Inf. Process. Manage. 59(2), 102888 (2022)

    Article  Google Scholar 

  10. Rondon, L.P., Babun, L., Aris, A., Akkaya, K., Uluagac, A.S.: Survey on enterprise Internet-of-Things systems (E-IoT): a security perspective. Ad Hoc Netw. 125, 102728 (2022)

    Article  Google Scholar 

  11. Giordano, G., Palomba, F., Ferrucci, F.: On the use of artificial intelligence to deal with privacy in IoT systems: a systematic literature review. J. Syst. Softw. 193, 111475 (2022)

    Google Scholar 

  12. Honar, P.H., Rashid, M.A., Alam, F., Demidenko, S.: Experimental performance analysis of a scalable distributed hyperledger fabric for a large-scale IoT testbed. Sensors 22(13), 4868 (2022)

    Article  Google Scholar 

  13. Sicari, S., Rizzardi, A., Coen-Porisini, A.: Smart transport and logistics: a Node-RED implementation. Internet Technol. Lett. 2(2), e88 (2019). https://doi.org/10.1002/itl2.88

    Article  Google Scholar 

  14. Heble, S., Kumar, A., Prasad, K., Samirana, S., Rajalakshmi, P., Desai, U. B.: A low power IoT network for smart agriculture. In: IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings 2018, vol. 2018–01, pp. 609–614, WF-IoT (2018)

    Google Scholar 

  15. Lekić, M., Gardašević, G.: IoT sensor integration to Node-RED platform. In: 2018 17th International Symposium on INFOTEH-JAHORINA, INFOTEH 2018 - Proceedings, vol. 2018-January, pp. 1–5, INFOTEH (2018)

    Google Scholar 

  16. Rajalakshmi, A., Shahnasser, H.: Internet of Things using Node-Red and alexa. In: 2017 17th International Symposium on Communications and Information Technologies, ISCIT 2017, vol. 2018–01, pp. 1–4, ISCIT (2017)

    Google Scholar 

  17. Mehmood, M., Ali, W., Ulasyar, A., Zad, H., Khattak, A., Imran, K.: A Low Cost Internet of Things (LCIoT) based system for monitoring and control of UPS system using Node-Red, CloudMQTT and IBM Bluemix. In: 1st International Conference on Electrical, Communication and Computer Engineering, ICECCE (2019)

    Google Scholar 

  18. Zare A., Iqbal, M.: Low-Cost ESP32, Raspberry Pi, Node-Red, and MQTT protocol based SCADA system. In: IEMTRONICS 2020 - International IOT, Electronics and Mechatronics Conference, IEMTRONICS (2020)

    Google Scholar 

Download references

Acknowledgement

The authors thank the invaluable contribution of the Technological University Indoamerica, for his support in conducting the research project “ESTUDIO DE ALGORITMOS HIBRIDOS DE APRENDIZAJE AUTOMATICO PARA LA PREDICCION DE GENERACIÓN DE ENERGÍAS RENOVABLES”, Project Code: 281.230.2022. Also, the authors thank the Technical University of Ambato and the “DirecciÓn de Investigación y Desarrollo” (DIDE) for their support in conducting this research, in the execution of the project “Captación de Energía Lim-pia de Baja Potencia para Alimentación de Dispositivos de Quinta Generación (5G)”, approved by resolution “Nro. UTA-CONIN-2022-0015-R”. Project code: SFFISEI 07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gordón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cumbajín, M., Sánchez, P., Ortiz, O., Gordón, C. (2023). Monitoring System Based on an IoT Platform for an AFPM Generator. In: Botto-Tobar, M., Zambrano Vizuete, M., Montes León, S., Torres-Carrión, P., Durakovic, B. (eds) Applied Technologies. ICAT 2022. Communications in Computer and Information Science, vol 1755. Springer, Cham. https://doi.org/10.1007/978-3-031-24985-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24985-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24984-6

  • Online ISBN: 978-3-031-24985-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics