Skip to main content

Multivariable Control Approach Applied to the Embryo Incubation Process of Gallus Gallus Domesticus

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1755))

Included in the following conference series:

  • 364 Accesses

Abstract

In this paper, a multivariable control using fuzzy logic and genetic algorithms (GA) is developed to control the incubation process of “gallus gallus domesticus” embryos. The incubation process is a system with high interactions among its input and output variables. A dynamic decoupling is used through Relative Gain Array (RGA) analysis to reduce these interactions. The proportional-integral (PI) controllers and the linear decoupler are designed from single-variable control structures obtained from a parametric identification for systems that can approximate first order and first order with a delay (FOPDT). Comparative performance analysis of PI, PI-Fuzzy, and PI-Fuzzy tuned with Genetic Algorithms controllers are evaluated using the integral squared error (ISE) and integral absolute error (IAE) through experimental tests using the NODEMCU ESP-WROOM-32 embedded system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramos, J.M.P., Cedeño, E.A.L.: Estudio de las tecnologías de control utilizadas en las incubadoras avícolas. E-IDEA J. Eng. Sci. 2(4), 13–23 (2020)

    Google Scholar 

  2. Ali, M., Abdelwahab, M., Awadekreim, S., Abdalla, S.: Development of a monitoring and control system of infant incubator. In: 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), pp. 1–4. IEEE (2018)

    Google Scholar 

  3. Mueller, C.A., Burggren, W.W., Tazawa, H.: The physiology of the avian embryo. In: Sturkie’s Avian Physiology, 7th edn, pp. 1015–1046. Academic Press (2022)

    Google Scholar 

  4. Widhiada, W., Antara, I., Budiarsa, I., Karohika, I.: The robust PID control system of temperature stability and humidity on infant incubator based on arduino at mega 2560. In: IOP Conference Series: Earth and Environmental Science, vol. 248, no. 1, p. 012046. IOP Publishing (2019)

    Google Scholar 

  5. Pérez, C.S., Guzmán, J., Molina, J.S., Berenguel, M.: “Modelado y control multivariable de temperatura y humedad en un invernadero. In: de VIII Congreso Ibérico de agroingeniería, pp. 856–865. España, Algorfa (2015)

    Google Scholar 

  6. El Hadj Ali, J., Feki, E., Zermani, M.A., de Prada, C., Mami, A.: Incubator system identification of humidity and temperature: comparison between two identification environments. In: 2018 9th International Renewable Energy Congress (IREC), pp. 1–6 (2018)

    Google Scholar 

  7. Aldair, A.A., Rashid, A.T., Mokayef, M.: Design and implementation of intelligent control system for egg incubator based on IoT technology. In: 2018 4th International Conference on Electrical, Electronics and System Engineering (ICEESE), pp. 49–54. IEEE (2018)

    Google Scholar 

  8. Lestari, I.N., Mulyana, E., Mardi, R.: The implementation of Mamdani’s fuzzy model for controlling the temperature of chicken egg incubator. In: 2020 6th International Conference on Wireless and Telematics (ICWT), pp. 1–5. IEEE (2020)

    Google Scholar 

  9. Kutsira, G., Nwulu, N., Dogo, E.: Development of a small scaled microcontroller-based poultry egg incubation system. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1–7. IEEE (2019)

    Google Scholar 

  10. Sansomboonsuk, S., Phonhan, C., Phonhan, G.: Automatic incubator. Energy Res. J. 2(2), 51–56 (2011)

    Article  Google Scholar 

  11. Harb, S.K., Habbib, Y.A., Kassem, A.M., El Raies, A.-R.: Energy consumption for poultry egg incubator to suit small farmer. Egypt. J. Agric. Res. 88(1), 193–210 (2010)

    Google Scholar 

  12. Herrera, M., Gonzales, O., Leica, P., Camacho, O.: Robust controller based on an optimal-integral surface for quadruple-tank process. In: IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1–6. IEEE (2018)

    Google Scholar 

  13. Chacón, W., Vallejo, J., Herrera, M., Camacho, O.: Regulation of nonlinear chemical processes with variable dead time: a generalized proportional integral controller proposal. Int. J. Adv. Sci. Eng. Inf. Technol. 11(4), 1501–1506 (2021)

    Article  Google Scholar 

  14. van den Bosch, P.P., van der Klauw, A.C.: Modeling, Identification and Simulation of Dynamical Systems. CRC Press, Boca Raton (2020)

    Google Scholar 

  15. Herrera, M., Camacho, O., Leiva, H., Smith, C.: An approach of dynamic sliding mode control for chemical processes. J. Process Control 85, 112–120 (2020)

    Article  Google Scholar 

  16. Morilla, F., Garrido, J., Vázquez, F.: Control multivariable por desacoplo. Revista Iberoamericana de Automática e Informática industrial 10(1), 3–17 (2013)

    Article  Google Scholar 

  17. Bhat, V.S., Thirunavukkarasu, I., Priya, S.S.: Design and implementation of decentralized PI controller for pilot plant binary distillation column. Int. J. Chem. Tech. Res. 10(1), 284–294 (2017)

    Google Scholar 

  18. Garrido, J., Vázquez, F., Morilla, F.: Multivariable PID control by decoupling. Int. J. Syst. Sci. 47(5), 1054–1072 (2016)

    Article  MATH  Google Scholar 

  19. Garrido, J., Vázquez, F., Morilla, F.: Diseño de sistemas de control multivariable por desacoplo con controladores PID. In: X Simposio CEA de Ingeniería de Control, pp. 64–71 (2012)

    Google Scholar 

  20. Smith, C.A., Corripio, A.B.: Principles and Practices of Automatic Process Control. Wiley, New York (2005)

    Google Scholar 

  21. Cruz, P.P.: Inteligencia artificial con aplicaciones a la ingeniería. Alfaomega (2011)

    Google Scholar 

  22. Song, B., Xiao, Y., Xu, L.: Design of fuzzy PI controller for brushless dc motor based on PSO-GSA algorithm. Syst. Sci. Control Eng. 8(1), 67–77 (2020)

    Article  Google Scholar 

  23. Aguas, X., Revelo, J., Herrera, M., Cuaycal, A., Camacho, O.: A fuzzy-PD controller for wall-following of a mobile robot: experimental validation. Revista Digital Novasinergia 2(2), 49–57 (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Universidad San Francisco de Quito through the Poli-Grants Program under Grant 17461.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Camacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balseca, A., Herrera, M., Camacho, O. (2023). Multivariable Control Approach Applied to the Embryo Incubation Process of Gallus Gallus Domesticus. In: Botto-Tobar, M., Zambrano Vizuete, M., Montes León, S., Torres-Carrión, P., Durakovic, B. (eds) Applied Technologies. ICAT 2022. Communications in Computer and Information Science, vol 1755. Springer, Cham. https://doi.org/10.1007/978-3-031-24985-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24985-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24984-6

  • Online ISBN: 978-3-031-24985-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics