Skip to main content

Advanced Nanoparticles: A Boon or a Bane for Environmental Remediation Applications

  • Chapter
  • First Online:
Advanced Functional Nanoparticles "Boon or Bane" for Environment Remediation Applications

Abstract

The potential usage of nanotechnology in diverse range of applications has found promising alternative answers to the crucial problems associated with industrial and commercial sectors. The nanomaterials are currently customized to overcome the commercial drawbacks of bulk materials. The usage of advanced nanomaterials in optical devices, biomedicine, and environmental remediations, memory, and storage devices has brought a significant revolution in the industrial sector. However, the tremendous enhancement in the production of nanoparticles has raised the questions of potential risks associated with nanotechnology. The detailed overviewing of wellbeing, security, and ecological effects during fabrication, usage in different applications, and their removal from the environment are the major features for the growth and development of safe usage of nanotechnology. The partial understanding of the ecological providence of nanotechnology has further posed threats and hazards to human wellbeing. This chapter presents the new tools and advanced methodologies for the risk assessment of advanced nanomaterials in environmental remediation applications. We also discuss the harmful impacts of uncontrolled exposure of nanoparticles on living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Razali MH, Mamat M, Mehamod FSB, Amin KAM (2017) Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites. Chemosphere 168:474–482

    Article  CAS  Google Scholar 

  • Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manag 92:311–330

    Article  CAS  Google Scholar 

  • Akbari A, Amini M, Tarassoli A, Eftekhari-Sis B, Ghasemian N, Jabbari E (2018) Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct Nano-Objects 14:19–48

    Article  CAS  Google Scholar 

  • Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  CAS  Google Scholar 

  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9:42–75

    Article  CAS  Google Scholar 

  • Alharbi OM, Khattab RA, Ali I (2018) Health and environmental effects of persistent organic pollutants. J Mol Liq 263:442–453

    Article  CAS  Google Scholar 

  • Altýntýg E, Altundag H, Tuzen M, Sarý A (2017) Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem Eng Res Des 122:151–163

    Article  Google Scholar 

  • Ambashta RD, Sillanpaa M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Article  CAS  Google Scholar 

  • Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol 45:185–192

    Article  CAS  Google Scholar 

  • Azhar MR, Vijay P, Tadé MO, Sun H, Wang S (2018) Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products. Chemosphere 196:105–114

    Article  CAS  Google Scholar 

  • Bai S, Zhang K, Sun J, Luo R, Li D, Chen A (2014) Surface decoration of WO3 architectures with Fe2O3 nanoparticles for visible-light-driven photocatalysis. Cryst Eng Comm 16:3289–3294

    Article  CAS  Google Scholar 

  • Bai S, Liu H, Sun J, Tian Y, Chen S, Song J (2015) Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Appl Surf Sci 338:61–68

    Article  CAS  Google Scholar 

  • Ballav N, Das R, Giri S, Muliwa AM, Pillay K, Maity A (2018) L-cysteine doped polypyrrole (PPy@ L-Cyst): a super adsorbent for the rapid removal of Hg+2 and efficient catalytic activity of the spent adsorbent for reuse. Chem Eng J 345:621–630

    Article  CAS  Google Scholar 

  • Bao LP, Chong CO, Mohamed SMS, Pau-Loke S, Jo-Shu C, Tau CL, Su SL, Joon CJ (2020) Conventional and emerging technologies for removal of antibiotics from wastewater. J Hazard Mater:122961–122968

    Google Scholar 

  • Barnett JC (2007) Synthetic organic dyes, 1856–1901: an introductory literature review of their use and related issues in textile conservation. Stud Conserv 52:67–77

    Article  Google Scholar 

  • Bayal N, Jeevanandam P (2013) Sol–gel synthesis of SnO2–MgO nanoparticles and their photocatalytic activity towards methylene blue degradation. Mater Res Bull 48:3790–3799

    Article  CAS  Google Scholar 

  • Bengalli R, Colantuoni A, Perelshtein I, Gedanken A, Collini M, Mantecca P, Fiandra L (2021) In vitro skin toxicity of CuO and ZnO nanoparticles: application in the safety assessment of antimicrobial coated textiles. NanoImpact 21:100282–100295

    Article  CAS  Google Scholar 

  • Bhamore JR, Jha S, Park TJ, Kailasa SK (2019) Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells. J Photochem Photobiol B Biol 191:150–155

    Article  CAS  Google Scholar 

  • Bharathiraja B, Selvakumari IAE, Iyyappan J, Varjani S (2019) Itaconic acid: an effective sorbent for removal of pollutants from dye industry effluents. Curr Opin Environ Sci Health 12:6–17

    Article  Google Scholar 

  • Bhatia S, Verma N, Bedi RK (2016) Optical application of Er-doped ZnO nanoparticles for photodegradation of direct red – 31 dye. Opt Mater 62:392–398

    Article  CAS  Google Scholar 

  • Bhise K, Sau S, Alsaab H, Kashaw SK, Tekade RK, Iyer AK (2017) Nanomedicine for cancer diagnosis and therapy: advancement, success and structure–activity relationship. Ther. Deliv 8:1003–1018

    Article  CAS  Google Scholar 

  • Boruah PK, Sharma B, Hussain N, Das MR (2017) Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect. Chemosphere 168:1058–1067

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge-Evidence and impacts. Waste Manag 30(3):504–520

    Article  CAS  Google Scholar 

  • Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) A review of porous manganese oxide materials. Chem Mater 10:2619–2628

    Article  CAS  Google Scholar 

  • Budarz JF, Cooper EM, Gardner C, Hodzic E, Ferguson PL, Gunsch CK, Wiesner MR (2019) Chlorpyrifos degradation via photoreactive TiO2 nanoparticles: assessing the impact of a multi-component degradation scenario. J Hazard Mater 372:61–68

    Article  Google Scholar 

  • Bystrzejewski M, Pyrzyñska K, Huczko A, Lange H (2009) Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47:1201–1204

    Article  CAS  Google Scholar 

  • Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes. J Hazard Mater 174(1–3):694–699

    Article  CAS  Google Scholar 

  • Caruso G, Fresta CG, Costantino A, Lazzarino G, Amorini AM, Lazzarino G, Tavazzi B, Lunte SM, Dhar P, Gulisano M, Caraci F (2021) Lung surfactant decreases biochemical alterations and oxidative stress induced by a sub-toxic concentration of carbon nanoparticles in alveolar epithelial and microglial cells. Int J Mol Sci 22:2694–2707

    Article  CAS  Google Scholar 

  • Castillo M, Barceló D (2001) Characterisation of organic pollutants in textile wastewaters and landfill leachate by using toxicity-based fractionation methods followed by liquid and gas chromatography coupled to mass spectrometric detection. Analytica Chimica Acta 426(2):253–264

    Article  CAS  Google Scholar 

  • Chaudhary S, Sharma P, Renu R, Kumar R (2016) Hydroxyapatite doped CeO2 nanoparticles: impact on biocompatibility and dye adsorption properties. RSC Adv 6:62797–62809

    Article  CAS  Google Scholar 

  • Chaudhary RG, Bhusari GS, Tiple AD, Rai AR, Somkuvar SR, Potbhare AK, Lambat TL, Ingle PP, Abdala AA (2019) Metal/Metal Oxide Nanoparticles: toxicity, Applications, and Future Prospects. Curr Pharm Des 25(37):4013–4029

    Article  CAS  Google Scholar 

  • Chaudhary P, Fatima F, Kumar A (2020) Relevance of nanomaterials in food packaging and its advanced future prospects. J Inorg Organomet Polym Mater:1–13

    Google Scholar 

  • Chen H, He J (2008) Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J Phys Chem C 112:17540–17545

    Article  CAS  Google Scholar 

  • Chen C, Gunawan P, Xu R (2011) Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water. J Mater Chem 21:1218–1225

    Article  CAS  Google Scholar 

  • Chen X, Zhang F, Wang Q, Han X, Li X, Liu J (2015) The synthesis of ZnO/SnO2 porous nanofibers for dye adsorption and degradation. Dalton Trans 44:3034–3042

    Article  CAS  Google Scholar 

  • Cheng B, Le Y, Cai W, Yu J (2011) Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J Hazard Mater 185:889–897

    Article  CAS  Google Scholar 

  • Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, Poland CA, Tran CL, Donaldson K (2012) Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126(2):469–477

    Article  CAS  Google Scholar 

  • Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV (2021) Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 15:167–204

    Article  CAS  Google Scholar 

  • Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS nano 9(12):11737–11749

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley

    Book  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  Google Scholar 

  • Dai Y, Zhang N, Xing C, Cui Q, Sun Q (2019) The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223:12–27

    Article  CAS  Google Scholar 

  • Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162:317–322

    Article  CAS  Google Scholar 

  • Daneshvar N, Aber S, Seyeddorraji M, Khataee A, Rasoulifard M (2007) Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep Purif Technol 58:91–98

    Article  CAS  Google Scholar 

  • Daughton CG (2004) Non-regulated water contaminants: Emerging research. Environ. Impact Assess. Rev. 24(7):711–732

    Article  Google Scholar 

  • Degler D, Weimar U, Barsan N (2019) Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sens 4(9):2228–2249

    Article  CAS  Google Scholar 

  • Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18:348–355

    Article  Google Scholar 

  • Dong F, Lu L, Ha CS (2019) Silsesquioxane-containing hybrid nanomaterials: fascinating platforms for advanced applications. Macromol Chem Phys 220(3):1800324–1800329

    Article  Google Scholar 

  • Dréno B, Alexis A, Chuberre B, Marinovich M (2019) Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol 33:34–46

    Article  Google Scholar 

  • Dubey N, Kushwaha CS, Shukla SK (2020) A review on electrically conducting polymer bionanocomposites for biomedical and other applications. Int J Polym Mater PO 69(11):709–727

    Article  CAS  Google Scholar 

  • El-Bahy ZM, Ismail AA, Mohamed RM (2009) Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J Hazard Mater 166:138–143

    Article  CAS  Google Scholar 

  • Elhaj Baddar Z, Unrine JM (2018) Functionalized-ZnO-nanoparticle seed treatments to enhance growth and zn content of wheat (Triticum aestivum) seedlings. J Agric Food Chem 66(46):12166–12178

    Article  CAS  Google Scholar 

  • El-Hankari S, Aguilera-Sigalat J, Bradshaw D (2016) Surfactant-assisted ZnO processing as a versatile route to ZIF composites and hollow architectures with enhanced dye adsorption. J Mater Chem A 4:13509–13518

    Article  CAS  Google Scholar 

  • Fahmy HM, Mosleh AM, Abd Elghany A, Shams-Eldin E, Serea ESA, Ali SA, Shalan AE (2019) Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv 9(35):20118–20136

    Article  CAS  Google Scholar 

  • Fang L, Hou J, Xu C, Wang Y, Li J, Xiao F (2018) Enhanced removal of natural organic matters by calcined Mg/Al layered double hydroxide nanocrystalline particles: adsorption, reusability and mechanism studies. Appl Surf Sci 442:45–53

    Article  CAS  Google Scholar 

  • Fanizza E, Zhao H, Zio SD, Depalo N, Rosei F, Vomiero A, Curri ML, Striccoli M (2020) Encapsulation of dual emitting giant quantum dots in silica nanoparticles for optical ratiometric temperature nanosensors. Appl Sci 10(8):2767–2772

    Article  CAS  Google Scholar 

  • Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW (2008) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater 20:452–456

    Article  Google Scholar 

  • Feng M, YouW WZ, Chen Q, Zhan H (2013) Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate. ACS Appl Mater Interfaces 5:12654–12662

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photchem Rev 9:1–12

    Article  CAS  Google Scholar 

  • Goerke H, Weber K, Bornemann H, Ramdohr S, Plötz J (2004) Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota. Mar Pollut Bull 48(3-4):295–302

    Article  CAS  Google Scholar 

  • Gomez S, Marchena CL, Renzini MS, Pizzio L, Pierella L (2015) In situ generated TiO2 over zeolitic supports as reusable photocatalysts for the degradation of dichlorvos. Appl Catal B Environ 162:167–173

    Article  CAS  Google Scholar 

  • Guo J, Yuan S, Jiang W, Yue H, Cui Z, Liang B (2016) Adsorption and photocatalytic degradation behaviors of rhodamine dyes on surface-fluorinated TiO2 under visible irradiation. RSC Adv 6:4090–4100

    Article  CAS  Google Scholar 

  • Gupta K, Khatri OP (2017) Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J Colloid Interface Sci 501:11–21

    Article  CAS  Google Scholar 

  • Gupta A, Saurav JR, Bhattacharya S (2015) Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration. RSC Adv 5:71472–71481

    Article  CAS  Google Scholar 

  • Gupta VK, Saravanan R, Agarwal S, Gracia F, Khan MM, Qin J, Mangalaraja RV (2017) Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J Mol Liq 232:423–430

    Article  CAS  Google Scholar 

  • Gupta K, Gupta D, Khatri OP (2019) Graphene-like porous carbon nanostructure from Bengal gram bean husk and its application for fast and efficient adsorption of organic dyes. Appl Surf Sci 476:647–657

    Article  CAS  Google Scholar 

  • Gusain R, Khatri OP (2013) Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives. J Mater Chem A 1:5612–5616

    Article  CAS  Google Scholar 

  • Guy N, Cakar S, Ozacar M (2016) Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for Congo red degradation. J Colloid Interface Sci 466:128–137

    Article  CAS  Google Scholar 

  • Hameed S, Bhattarai P, Dai Z (2018) Cerasomes and bicelles: hybrid bilayered nanostructures with silica-like surface in cancer theranostics. Mater Chem Front 6:127–132

    Article  Google Scholar 

  • Hariharan C (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl Catal A Gen 304:55–61

    Article  CAS  Google Scholar 

  • Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  • Holm BA, Bergey EJ, De T, Rodman DJ, Kapoor R, Levy L, Friend CS, Prasad PN (2002) Nanotechnology in biomedical applications. Mol Cryst Liq Cryst 374(1):589–598

    Article  CAS  Google Scholar 

  • Hossain M, Shima H, Islam MA, Hasan M, Lee M (2016) Novel synthesis process for solar light- active porous carbon-doped CuO nanoribbon and its photocatalytic application for the degradation of an organic dye. RSC Adv 6:4170–4182

    Article  CAS  Google Scholar 

  • Hui M, Shengyan P, Yaqi H, Rongxin Z, Anatoly Z, Wei C (2018) A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chem Eng J 345:556–565

    Article  CAS  Google Scholar 

  • Islam MS, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48(7-8):624–649

    Article  CAS  Google Scholar 

  • Islam MR, Ferdous M, Sujan MI, Mao X, Zeng H, Azam MS (2020) Recyclable Ag-decorated highly carbonaceous magnetic nanocomposites for the removal of organic pollutants. J Colloid Interface Sci 562:52–62

    Article  CAS  Google Scholar 

  • Jancik Prochazkova A, Salinas Y, Yumusak C, Scharber MC, Brüggemann O, Weiter M, Sariciftci NS, Krajcovic J, Kovalenko A (2020) Controlling quantum confinement in luminescent perovskite nanoparticles for optoelectronic devices by the addition of water. ACS Appl Nano Mater 3(2):1242–1249

    Article  CAS  Google Scholar 

  • Janos P, Kuran P, Kormunda M, Stengl V, Grygar TM, Dosek M, Stastny M, Ederer J, Pilarova V, Vrtoch L (2014) Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates. J Rare Earths 32:360–370

    Article  CAS  Google Scholar 

  • Janoš P, Kuráň P, Pilařová V, Trögl J, Šťastný M, Pelant O, Henych J, Bakardjieva S, Životský O, Kormunda M, Mazanec K (2015) Magnetically separable reactive sorbent based on the CeO2/γ-Fe2O3 composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents. Chem Eng J 262:747–755

    Article  Google Scholar 

  • Ju Y, Dong B, Yu J, Hou Y (2019) Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. Nano Today 261:08–122

    Google Scholar 

  • Kang D, Hu C, Zhu Q (2018) Morphology controlled synthesis of hierarchical structured Fe2O3 from natural ilmenite and its high performance for dyes adsorption. Appl Surf Sci 459:327–335

    Article  CAS  Google Scholar 

  • Kasaai MR (2020) Biopolymer-based nanomaterials for food, nutrition, and healthcare sectors: an overview on their properties, functions, and applications. In: Handbook of functionalized nanomaterials for industrial applications, pp 167–184

    Google Scholar 

  • Katz E (2019) Synthesis, properties and applications of magnetic nanoparticles and nanowires – a brief introduction. Magnetochemistry 5(4):61–65

    Article  CAS  Google Scholar 

  • Ke M, Li Y, Qu Q, Ye Y, Peijnenburg WJGM, Zhang Z, Xu N, Lu T, Sun L, Qian H (2020) Offspring toxicity of silver nanoparticles to Arabidopsis thaliana flowering and floral development. J Hazard Mater 386:121975–121979

    Article  CAS  Google Scholar 

  • Khairy M, Zakaria W (2014) Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt J Pet 23:419–426

    Article  Google Scholar 

  • Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328:8–26

    Article  CAS  Google Scholar 

  • Kim H, Saito N (2018) One-pot synthesis of purple benzene-derived MnO2-carbon hybrids and synergistic enhancement for the removal of cationic dyes. Sci Rep 8:4342–4348

    Article  Google Scholar 

  • Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Grätzel M, Park NG (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13:2412–2417

    Article  CAS  Google Scholar 

  • Kim H, Watthanaphanit A, Saito N (2017) Simple solution plasma synthesis of hierarchical nanoporousMnO2for organic dye removal. ACS Sustain Chem Eng 5:5842–5851

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Takenaka S, Muller W (2012) Differences in the biokinetics of inhaled nano- versus micrometer-sized particles. Acc Chem Res 46(3):714–722

    Article  Google Scholar 

  • Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38(16):4377–4382

    Article  CAS  Google Scholar 

  • Lee CK, Liu SS, Juang LC, Wang CC, Lyu MD, Hung SH (2007) Application of titanate nanotubes for dyes adsorptive removal from aqueous solution. J Hazard Mater 148:756–760

    Article  CAS  Google Scholar 

  • Lee ST, Kulkarni HR, Singh A, Baum RP (2017) Theranostics of neuroendocrine tumors. Visc Med 33:358–366

    Article  Google Scholar 

  • Lee CC, Lin YH, Hou WC, Li MH, Chang JW (2020) Exposure to ZnO/TiO2 nanoparticles affects health outcomes in cosmetics salesclerks. Int J Environ Res Public Health 17:6088–6100

    Article  CAS  Google Scholar 

  • Leong KY, Rahman MRA, Gurunathan BA (2019) Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges. J Energy Storage 21:18–31

    Article  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31(4):111–122

    Article  CAS  Google Scholar 

  • Li L, Xiao J, Liu P, Yang G (2015) Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal. Sci Rep 5:9028

    Article  CAS  Google Scholar 

  • Li F, Du Y, Liu J, Sun H, Wang J, Li R, Kim D, Hyeon T, Ling D (2018a) Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv Mater 30(35):1802808–1802812

    Article  Google Scholar 

  • Li X, Liu Y, Zhang C, Wen T, Zhuang L, Wang X, Song G, Chen D, Ai Y, Hayat T, Wang X (2018b) Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chem Eng J 336:241–252

    Article  CAS  Google Scholar 

  • Lin LS, Yang X, Zhou Z, Yang Z, Jacobson O, Liu Y, Yang A, Niu G, Song J, Yang HH, Chen X (2017) Yolk–Shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic–plasmonic hybrid theranostic platform. Adv Mater 29(21):1606681–1606687

    Article  Google Scholar 

  • Liu L, Liu H, Zhao YP, Wang Y, Duan Y, Gao G, Ge M, Chen W (2008) Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ Sci Technol 42:2342–2348

    Article  CAS  Google Scholar 

  • Liu Y, Zeng G, Tang L, Cai Y, Pang Y, Zhang Y, Yang G, Zhou Y, He X, He Y (2015) Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. J Colloid Interface Sci 448:451–459

    Article  CAS  Google Scholar 

  • Liu J, Chen H, Shi X, Nawar S, Werner JG, Huang G, Ye M, Weitz DA, Solovev AA, Mei Y (2020a) Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants. Environ Sci Nano 7(2):656–664

    Article  CAS  Google Scholar 

  • Liu M, Anderson RC, Lan X, Conti PS, Chen K (2020b) Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med Res Rev 40(3):909–930

    Article  CAS  Google Scholar 

  • Long M, Cai W, Cai J, Zhou B, Chai X, Wu Y (2006) Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J Phys Chem B 110:20211–20216

    Article  CAS  Google Scholar 

  • Long J, Xue W, Xie X, Gu Q, Zhou Y, Chi Y, Chen W, Ding Z, Wang X (2011) Sn2+ dopant induced visible-light activity of SnO2 nanoparticles for H2 production. Catal Commun 16:215–219

    Article  CAS  Google Scholar 

  • Low SA, Isserman AM (2009) Ethanol and the local economy: industry trends, location factors, economic impacts, and risks. Econ Dev Q 23(1):71–88

    Article  Google Scholar 

  • Ma L, Wang Q, Islam SM, Liu Y, Ma S, Kanatzidis MG (2016) Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42− ion. J Am Chem Soc 138:2858–2866

    Article  CAS  Google Scholar 

  • Mac Rae I (1985) Removal of pesticides in water by microbial cells adsorbed to magnetite. Water Res 19:825–830

    Article  CAS  Google Scholar 

  • Mädler L, Friedlander SK (2007) Transport of nanoparticles in gases: overview and recent advances. Aerosol Air Qual Res 7(3):304–342

    Article  Google Scholar 

  • Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B, Kennedy J, Maaza M (2017) Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine – B dye for textile engineering application. J Alloys Compd 727:1324–1337

    Article  CAS  Google Scholar 

  • Malhotra N, Villaflores OB, Audira G, Siregar P, Lee JS, Ger TR, Hsiao CD (2020) Toxicity studies on graphene-based nanomaterials in aquatic organisms: current understanding. Molecules 25(16):3618–3623

    Article  CAS  Google Scholar 

  • Maliyekkal SM, Sreeprasad TS, Krishnan D, Kouser S, Mishra AK, Waghmare UV, Pradeep T (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9:273–283

    Article  CAS  Google Scholar 

  • Malwal D, Gopinath P (2016) Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation. Cat Sci Technol 6:4458–4472

    Article  CAS  Google Scholar 

  • Mangadlao JD, Wang X, McCleese C, Escamilla M, Ramamurthy G, Wang Z, Govande M, Basilion JP, Burda C (2018) Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano 12(4):3714–3725

    Article  CAS  Google Scholar 

  • Mao Y, Park TJ, Zhang F, Zhou H, Wong SS (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3:1122–1139

    Article  CAS  Google Scholar 

  • Mao LC, Zhang XY, Wei Y (2019) Recent advances and progress for the fabrication and surface modification of AIE-active organic-inorganic luminescent composites. Chin J Polym Sci 37(4):340–351

    Article  CAS  Google Scholar 

  • Mason SA, Garneau D, Sutton R, Chu Y, Ehmann K, Barnes J, Fink P, Papazissimos D, Rogers DL (2016) Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut 218:1045–1054

    Article  CAS  Google Scholar 

  • Matlochová A, Plachá D, Rapantová N (2013) The application of nanoscale materials in groundwater remediation. Pol J Environ Stud 22(5):1401–1410

    Google Scholar 

  • Mclaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541

    Article  CAS  Google Scholar 

  • Meng A, Xing J, Li Z, Li Q (2015) Cr-doped ZnO nanoparticles: synthesis, characterization, adsorption property, and recyclability. ACS Appl Mater Interfaces 7:27449–27457

    Article  CAS  Google Scholar 

  • Mir AA, Amooey AA, Ghasemi S (2018) Adsorption of direct yellow 12 from aqueous solutions by an iron oxide-gelatin nanoadsorbent; kinetic, isotherm and mechanism analysis. J Clean Prod 170:570–580

    Article  CAS  Google Scholar 

  • Modena MM, Rühle B, Burg TP, Wuttke S (2019) Nanoparticle characterization: what to measure? Adv Mater 31(32):1901556–1901562

    Article  Google Scholar 

  • Montanheiro TLDA, Ribas RG, Montagna LS, Menezes BRCD, Schatkoski VM, Rodrigues KF, Thim GP (2020) A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials. J Biomater Sci Polym Ed:1–25

    Google Scholar 

  • Mu J, Lin J, Huang P, Chen X (2018) Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem Soc Rev 47(15):5554–5573

    Article  CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  Google Scholar 

  • Müller N (2007) Nanoparticles in the environment: Risk assessment based on exposure modelling: what concentrations of nano titanium dioxide, carbon nanotubes and nano silver are we exposed to? Doctoral dissertation, Department of Environmental Sciences, ETH Zurich, Zurich

    Google Scholar 

  • Murray JW (1974) The surface chemistry of hydrous manganese dioxide. J Colloid Interface Sci 46:357–371

    Article  CAS  Google Scholar 

  • Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166(2):182–194

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676

    Article  CAS  Google Scholar 

  • Nascimento R, Ferreira OP, De Paula AJ, Neto VD (eds) (2019) Nanomaterials applications for environmental matrices: water, soil and air. Elsevier

    Google Scholar 

  • Nassar MY, Mohamed TY, Ahmed IS, Samir I (2017) MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J Mol Liq 225:730–740

    Article  CAS  Google Scholar 

  • Navarro S, Fenoll J, Vela N, Ruiz E, Navarro G (2009) Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J Hazard Mater 172:1303–1310

    Article  CAS  Google Scholar 

  • Nigel Corns S, Partington SM, Towns AD (2009) Industrial organic photochromic dyes. Color Technol 125(5):249–261

    Article  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230

    Article  CAS  Google Scholar 

  • Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A, Murakami M (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58(10):1437–1446

    Article  CAS  Google Scholar 

  • Oliveira ML, Saikia BK, da Boit K, Pinto D, Tutikian BF, Silva LF (2019) River dynamics and nanopaticles formation: a comprehensive study on the nanoparticle geochemistry of suspended sediments in the Magdalena River, Caribbean Industrial Area. J Clean Prod 213:819–824

    Article  CAS  Google Scholar 

  • Parasuraman D, Leung E, Serpe MJ (2012) Poly (N-isopropylacrylamide) microgel based assemblies for organic dye removal from water: microgel diameter effects. Colloid Polym Sci 290(11):1053–1064

    Article  CAS  Google Scholar 

  • Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–269

    Article  CAS  Google Scholar 

  • Park W, Shin H, Choi B, Rhim WK, Na K, Han DK (2020) Advanced hybrid nanomaterials for biomedical applications. Prog Mater Sci:100686–100692

    Google Scholar 

  • Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198

    Article  CAS  Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Article  Google Scholar 

  • Prajitha N, Athira SS, Mohanan PV (2019) Bio-interactions and risks of engineered nanoparticles. Environ Res 172:98–108

    Article  CAS  Google Scholar 

  • Qiao D, Li Z, Duan J, He X (2020) Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants. Chem Eng Trans:125952–125957

    Google Scholar 

  • Rafaie HA, Nor RM, Azmina MS, Ramli NIT, Mohamed R (2017) Decoration of ZnO microstructures with Ag nanoparticles enhanced the catalytic photodegradation of methylene blue dye. J Environ Chem Eng 5:3963–3972

    Article  CAS  Google Scholar 

  • Rafieepour A, Azari MR, Khodagholi F, Jaktaji JP, Mehrabi Y, Peirovi H (2021) Interactive toxicity effect of combined exposure to hematite and amorphous silicon dioxide nanoparticles in human A549 cell line. Toxicol Ind Health 37:289–302

    Article  CAS  Google Scholar 

  • Rasheed T, Rizwan K, Bilal M, Iqbal H (2020) Metal-organic framework-based engineered materials – fundamentals and applications. Molecules 25(7):1598–1603

    Article  CAS  Google Scholar 

  • Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27

    Article  CAS  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1(2):72–96

    Article  Google Scholar 

  • Rehman AU, Nazir S, Irshad R, Tahir K, Rehman K, Islam RU, Wahab Z (2020) Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 1:114455–114480

    Google Scholar 

  • Resnik DB (2019) How should engineered nanomaterials be regulated for public and environmental health? AMA J Ethics 21:363–369

    Article  Google Scholar 

  • Saha B, Das S, Saikia J, Das G (2011) Preferential and enhanced adsorption of different dyes on Iron oxide nanoparticles: a comparative study. J Phys Chem C 115:8024–8033

    Article  CAS  Google Scholar 

  • Sahu TK, Arora S, Banik A, Iyer PK, Qureshi M (2017) Efficient and rapid removal of environmental malignant arsenic (III) and industrial dyes using reusable, recoverable ternary Iron oxide-ORMOSIL-reduced graphene oxide composite. ACS Sustain Chem Eng 5:5912–5921

    Article  CAS  Google Scholar 

  • Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106

    Article  CAS  Google Scholar 

  • Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S (2010) Novel biocompatible composite (chitosan-zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Colloids Surf B: Biointerfaces 80:86–93

    Article  CAS  Google Scholar 

  • Sarkar AK, Saha A, Tarafder A, Panda AB, Pal S (2016) Efficient removal of toxic dyes via simultaneous adsorption and solar light driven photodegradation using recyclable functionalized amylopectin–TiO2–Au nanocomposite. ACS Sustain Chem Eng 4(3):1679–1688

    Article  CAS  Google Scholar 

  • Sarong MM, Orge RF, Eugenio PJG, Monserate JJ (2020) Utilization of rice husks into biochar and nanosilica: for clean energy, soil fertility and green nanotechnology. Int J Des Nat Ecodyn 15(1):97–102

    Article  Google Scholar 

  • Saroyan HS, Giannakoudakis DA, Sarafidis CS, Lazaridis NK, Deliyanni EA (2017) Effective impregnation for the preparation of magnetic mesoporous carbon: application to dye adsorption. J Chem Technol Biotechnol 92:1899–1911

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  • Selvan ST, Tan TT, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26:11631–11641

    Article  CAS  Google Scholar 

  • Shahbazi MA, Faghfouri L, Ferreira MP, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA (2020) The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 49(4):1253–1321

    Article  CAS  Google Scholar 

  • Shan D, Ma C, Yang J (2019) Enabling biodegradable functional biomaterials for the management of neurological disorders. Adv Drug Deliv Rev 148:219–238

    Article  CAS  Google Scholar 

  • Sharma M, Pandey C, Sharma N, Kamal M, Sayee U, Akhtar S (2018) Cancer nanotechnology-an excursion on drug delivery systems. Anti-Cancer Agents Med Chem 18(15):2078–2092

    Article  CAS  Google Scholar 

  • Shchukin DG, Caruso RA (2004) Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration. Chem Mater 16:2287–2292

    Article  CAS  Google Scholar 

  • Shi JP, Evans DE, Khan AA, Harrison RM (2001) Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere. Atmos Environ 35(7):1193–1202

    Article  CAS  Google Scholar 

  • Shirzad-Siboni M, Jonidi-Jafari A, Farzadkia M, Esrafili A, Gholami M (2017) Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: kinetics and reaction pathways. J Environ Manag 186:1–11

    Article  CAS  Google Scholar 

  • Singh S (2019) Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 29(4):300–311

    Article  CAS  Google Scholar 

  • Singh R, Behera M, Kumar S (2020) Nano-bioremediation: an innovative remediation technology for treatment and management of contaminated sites. In: Bioremediation of industrial waste for environmental safety, pp 165–182. Springer, Singapore

    Google Scholar 

  • Siyasukh A, Chimupala Y, Tonanon N (2018) Preparation of magnetic hierarchical porous carbon spheres with graphitic features for high methyl orange adsorption capacity. Carbon 134:207–221

    Article  CAS  Google Scholar 

  • Song Q, Liang J, Fang Y, Guo Z, Du Z, Zhang L, Liu Z, Huang Y, Lin J, Tang C (2020) Nickel (II) modified porous boron nitride: an effective adsorbent for tetracycline removal from aqueous solution. Int J Chem Eng:124985–124990

    Google Scholar 

  • Sun TY, Mitrano DM, Bornhöft NA, Scheringer M, Hungerbühler K, Nowack B (2017) Envisioning nano release dynamics in a changing world: using dynamic probabilistic modeling to assess future environmental emissions of engineered nanomaterials. Environ Sci Technol 51:2854–2863

    Article  CAS  Google Scholar 

  • Tachikawa T, Fujitsuka M, Majima T (2007) Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J Phys Chem C 111:5259–5275

    Article  CAS  Google Scholar 

  • Tahara K (2020) Pharmaceutical formulation and manufacturing using particle/powder technology for personalized medicines. Adv Powder Technol 31(1):387–392

    Article  CAS  Google Scholar 

  • Tang ZR, Zhang Y, Xu YJ (2011) A facile and high-yield approach to synthesize one-dimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants. RSC Adv 1:1772–1778

    Article  CAS  Google Scholar 

  • Tang Y, Li M, Mu C, Zhou J, Shi B (2019) Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles. Chemosphere 229:570–579

    Article  CAS  Google Scholar 

  • Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall AB (2016) How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 10(1):102–110

    CAS  Google Scholar 

  • Tiwari B, Drogui P, Tyagi RD (2020) Removal of emerging micro-pollutants from pharmaceutical industry wastewater. In: Current developments in biotechnology and bioengineering, pp 457–480

    Google Scholar 

  • Tricoli A, Bo R (2020) Nanoparticle-based biomedical sensors. Front Nanosci 15:247–269

    Article  Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200

    Article  CAS  Google Scholar 

  • Ullah H, Li X, Peng L, Cai Y, Mielke H (2020) In vivo phytotoxicity, uptake, and translocation of PbS nanoparticles in maize (Zea mays L.) plants. Sci Total Environ 737:136994–136998

    Article  Google Scholar 

  • Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4:3823–3851

    Article  CAS  Google Scholar 

  • Vambol S, Vambol V, Suchikova Y, Deyneko N (2017) Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European J Enterp Technol 1(10):27–36

    Article  Google Scholar 

  • Vignardi CP, Muller EB, Tran K, Couture J, Means JC, Murray J, Ortiz C, Keller AA, Sanchez NS, Lenihan HS (2020) Conventional and nano-copper pesticide are equally toxic to the estuarine amphipod Leptocheirus plumulosus. Aquat Toxicol:105481–105486

    Google Scholar 

  • Wang Y, Cheng R, Wen Z, Zhao L (2012) Facile preparation of Fe3O4 nanoparticles with cetyltrimethylammonium bromide (CTAB) assistant and a study of its adsorption capacity. Chem Eng J 181–2:823–827

    Article  Google Scholar 

  • Wang L, Zhao R, Wang XW, Mei L, Yuan LY, Wang SA, Chai ZF, Shi WQ (2014) Size-tunable synthesis of monodisperse thorium dioxide nanoparticles and their performance on the adsorption of dye molecules. CrystEngComm 16:10469–10475

    Article  CAS  Google Scholar 

  • Wang H, Liang X, Wang J, Jiao S, Xue D (2020) Multifunctional inorganic nanomaterials for energy applications. Nanoscale 12(1):14–42

    Article  CAS  Google Scholar 

  • Wani MR, Shadab GHA (2021) Low doses of thymoquinone protect isolated human blood cells from TiO2 nanoparticles induced oxidative stress, hemolysis, cytotoxicity, DNA damage and collapse of mitochondrial activity. Phytomedicine Plus 1:100056–100067

    Article  Google Scholar 

  • Warheit DB, Donner EM (2015) Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: recognizing hazard and exposure issues. Food Chem Toxicol 85:138–147

    Article  CAS  Google Scholar 

  • Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. TrAC 30(1):72–83

    CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  CAS  Google Scholar 

  • Winardi S, Qomariyah L, Widiyastuti W, Kusdianto K, Nurtono T, Madhania S (2020) The role of electro-sprayed silica-coated zinc oxide nanoparticles to hollow silica nanoparticles for optical devices material and their characterization. Colloids Surf A Physicochem Eng Asp:125327–125332

    Google Scholar 

  • Wu J, Wang J, Du Y, Li H, Jia X (2016) Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO2 nanotubes. J Nanopart Res 18:191–196

    Article  Google Scholar 

  • Xiang Y, Yang X, Xu Z, Hu W, Zhou Y, Wan Z, Yang Y, Wei Y, Yang J, Tsang DC (2020) Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: effects and mechanisms. Sci Total Environ 709:136079–136083

    Article  CAS  Google Scholar 

  • Xiao J, Lv W, Xie Z, Tan Y, Song Y, Zheng Q (2016) Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions. J Mater Chem A 4:12126–12135

    Article  CAS  Google Scholar 

  • Xie T, Liu C, Xu L, Yang J, Zhou W (2013) Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. J Phys Chem C 117:24601–24610

    Article  CAS  Google Scholar 

  • Xiong L, Yang Y, Mai J, Sun W, Zhang C, Wei D, Chen Q, Ni J (2010) Adsorption behavior of methylene blue onto titanate nanotubes. Chem Eng J 156:313–320

    Article  CAS  Google Scholar 

  • Xu D, Cheng F, Lu Q, Dai P (2014) Microwave enhanced catalytic degradation of methyl orange in aqueous solution over CuO/CeO2 catalyst in the absence and presence of H2O2. Ind Eng Chem Res 53:2625–2632

    Article  CAS  Google Scholar 

  • Yang G, Liu Y, Wang H, Wilson R, Hui Y, Yu L, Wibowo D, Zhang C, Whittaker AK, Middelberg AP, Zhao CX (2019a) Bioinspired core–shell nanoparticles for hydrophobic drug delivery. Angew Chem Int 58(40):14357–14364

    Article  CAS  Google Scholar 

  • Yang S, Chen S, Fan J, Shang T, Huang D, Li G (2019b) Novel mesoporous organosilica nanoparticles with ferrocene group for efficient removal of contaminants from wastewater. J Colloid Interface Sci 554:565–571

    Article  CAS  Google Scholar 

  • Ye X, Wang J, Fan M (2019) Evaluating tribological properties of the stearic acid-based organic nanomaterials as additives for aqueous lubricants. Tribol Int 140:105848–105853

    Article  CAS  Google Scholar 

  • Yi C, Pan Y, Fang Y (2019) Surface engineering of carbon nanodots (C-Dots) for biomedical applications. In: Novel nanomaterials for biomedical, environmental and energy applications. Elsevier, pp 137–188

    Google Scholar 

  • Yousaf SS, Houacine C, Khan I, Ahmed W, Jackson MJ (2020) Importance of biomaterials in biomedical engineering. In: Advances in medical and surgical engineering, pp 149–176

    Google Scholar 

  • Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci Total Environ 715:136994–136999

    Article  CAS  Google Scholar 

  • Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G (2019) Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J Med Chem 63(1):1–22

    Article  Google Scholar 

  • Zhang S, Xu W, Zeng M, Li J, Li J, Xu J, Wang X (2013a) Superior adsorption capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. J Mater Chem A 1:11691–11696

    Article  CAS  Google Scholar 

  • Zhang X, Zhang P, Wu Z, Zhang L, Zeng G, Zhou C (2013b) Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf A Physicochem Eng Asp 435:85–90

    Article  CAS  Google Scholar 

  • Zhang H, Wang X, Chen C, An C, Xu Y, Dong Y, Zhang Q, Wang Y, Jiao L, Yuan H (2016) Facile synthesis of diverse transition metal oxide nanoparticles and electrochemical properties. Inorg Chem Front 3:1048–1057

    Article  CAS  Google Scholar 

  • Zhang J, Li S, Ju DD, Li X, Zhang JC, Yan X, Long YZ, Song F (2018a) Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery. Chem Eng J 349:554–561

    Article  CAS  Google Scholar 

  • Zhang P, Wang F, Yu M, Zhuang X, Feng X (2018b) Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem Soc Rev 47(19):7426–7451

    Article  CAS  Google Scholar 

  • Zhang J, Guo W, Li Q, Wang Z, Liu S (2018c) The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ Sci Nano 5:2482–2499

    Article  CAS  Google Scholar 

  • Zhang W, Ke S, Sun C, Xu X, Chen J, Yao L (2019) Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review. Environ Sci Pollut Res 26(8):7390–7404

    Article  CAS  Google Scholar 

  • Zhang L, Wang WX, Li A, Liu J, Li HW, Wu Y (2020) Influence of pressure on the structure and luminescence properties of AMP-protected gold nanoparticles as revealed by fluorescence spectra and 2D correlation analysis. J Mol Struct:128173–128178

    Google Scholar 

  • Zhao J, Chen C, Ma W (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35:269–278

    Article  CAS  Google Scholar 

  • Zhao L, Cui T, Li Y, Wang B, Han J, Han L, Liu Z (2015) Efficient visible light photocatalytic activity of p–n junction CuO/TiO2 loaded on natural zeolite. RSC Adv 5:64495–64502

    Article  CAS  Google Scholar 

  • Zheng X, Jiang B, Lang H, Zhang R, Li Y, Bian Y, Guan X (2019) Effects of antibiotics on microbial communities responsible for perchlorate degradation. Water Air Soil Pollut 230(10):244

    Article  Google Scholar 

  • Zhou LJ, Li J, Zhang Y, Kong L, Jin M, Yang X, Wu QL (2019) Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin, China. Ecotoxicol Environ Saf 183:109511

    Article  CAS  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215

    Article  CAS  Google Scholar 

  • Zhu HY, Jiang R, Fu YQ, Li RR, Yao J, Jiang ST (2016) Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation. Appl Surf Sci 369:1–10

    Article  CAS  Google Scholar 

  • Zhu Y, Wu J, Chen M, Liu X, Xiong Y, Wang Y, Feng T, Kang S, Wang X (2019) Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere 237:124403

    Article  CAS  Google Scholar 

  • Zhuang J, Young AP, Tsung CK (2017) Integration of biomolecules with metal–organic frameworks. Small 13(32):1700880–1700886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita Chaudhary .

Editor information

Editors and Affiliations

Appendices

Multiple-Choice Question (MCQ)

  1. 1.

    The term “nano” in nanotechnology stands for:

    1. (a)

      A nanometre is one-billionth of a metre

    2. (b)

      A nanometre is one-millionth of a metre

    3. (c)

      A nanometre is one-thousand of a metre

    4. (d)

      A nanometre is one-trillionth of a metre

  • Answer: (a)

  1. 2.

    The term nanotechnology was first coined by which scientist and when?

    1. (a)

      Norio Taniguchi, 1974

    2. (b)

      Eric Drexler, 1986

    3. (c)

      Richard Feynman, 1959

    4. (d)

      Sumio Iijima, 1991

  • Answer: (c)

  1. 3.

    What do you understand by the term carbon quantum dots?

    1. (a)

      Carbon quantum dots are carbon nanoparticles of 10–100 nm range.

    2. (b)

      Carbon quantum dots are small carbon nanoparticles with some form of surface passivation.

    3. (c)

      Carbon quantum dots are buckminsterfullerene, composed of 60 carbon atoms.

    4. (d)

      All of the above.

  • Answer: (b)

  1. 4.

    Nanofiltration is widely used in water purifiers; what does it mean?

    1. (a)

      A technique used macro-sized channels for filtration

    2. (b)

      A technique used for the filtration of nanoparticles

    3. (c)

      Membrane-based filtration method that uses nanometre-sized pores for filtration

    4. (d)

      None of the above

  • Answer: (c)

  1. 5.

    Quantum confinement effect in nanomaterials is observed because of:

    1. (a)

      The particles follow rules of quantum chemistry.

    2. (b)

      The size of the particle is too small to be comparable to the wavelength of the electron.

    3. (c)

      The property of both bulk and nanomaterials.

    4. (d)

      Both (b) and (c).

  • Answer: (b)

  1. 6.

    The term nanocomposites means:

    1. (a)

      Materials that incorporate nanosized particles into a matrix of standard material

    2. (b)

      A mixture of micron-sized nanoparticles

    3. (c)

      Particles having a size in sub-micron level

    4. (d)

      All of the above

  • Answer: (a)

  1. 7.

    Which one of these statements at the nanoscale is NOT true?

    1. (a)

      Aluminium at the nanoscale is highly combustible.

    2. (b)

      Silicon at the nanoscale is an insulator.

    3. (c)

      Gold at the nanoscale is red.

    4. (d)

      None of the above

  • Answer: (b)

  1. 8.

    The term graphene used to for:

    1. (a)

      A one-atom-thick sheet of carbon

    2. (b)

      A new material made from carbon nanotubes

    3. (c)

      Gold at the nanoscale

    4. (d)

      Both (a) and (b)

  • Answer: (b)

  1. 9.

    What is the term related to the study of the toxic effect of nanoparticles?

    1. (a)

      Nano-remediation

    2. (b)

      Nano-robotics

    3. (c)

      Neurotoxicology

    4. (d)

      Nanotoxicology

  • Answer: (d)

Short Questions

  • Q1. How do nanomaterials differ as compared to their bulk counterparts?

    • Answer: The significant size reduction has induced quantum effect and further enhanced the surface to volume ratio in nanomaterials as compared to their bulk counterparts.

  • Q2. Why is nanotoxicity a threat to living beings?

    • Answer: The high-end applications of nanoparticles have further enhanced their production rate and made living beings more prone to their exposure. With time slow deposition results into various health hazards in living beings.

  • Q3. Explain the properties of photocatalyst used in the degradation of organic pollutants.

    • Answer: The method of photo-degradation is primarily based on organic pollutant adsorption ability over the photocatalyst surface. The photocatalyst with higher adsorption surface makes the degradation process easier as compared to other remediation processes.

  • Q4. Why are semiconducting nanomaterials used in pollutant degradation?

    • Answer: The existence of controllable morphology, crystalline structure, and bandgap values in semiconducting nanomaterials have enhanced their potential in environmental remediation activities. The existence of oxygen over the exterior surface of semiconducting nanomaterials has further affected the photocatalytic degradation rate for organic contaminants.

  • Q5. In various literature, zinc oxide (ZnO) nanoparticles act as a potential photocatalyst. Explain.

    • Answer: The application of zinc oxide nanomaterials as potential photocatalyst has been well documented in literature due to their high quantity effectiveness and low fabrication cost with excellent stability and biocompatibility towards living beings. The higher potential of ZnO nanoparticles was further associated with the more absorption capacity of ZnO nanoparticles towards solar radiation.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rohilla, D., Chaudhary, S. (2023). Advanced Nanoparticles: A Boon or a Bane for Environmental Remediation Applications. In: Kumar, R., Kumar, R., Chaudhary, S. (eds) Advanced Functional Nanoparticles "Boon or Bane" for Environment Remediation Applications. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-24416-2_2

Download citation

Publish with us

Policies and ethics