Skip to main content

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 25))

  • 192 Accesses

Abstract

We prove a structure theorem for compact inverse categories. The Ehresmann-Schein-Nambooripad theorem gives a structure theorem for inverse monoids: they are inductive groupoids. A particularly nice case due to Clifford is that commutative inverse monoids become semilattices of abelian groups. It has also been categorified by Hoehnke and DeWolf-Pronk to a structure theorem for inverse categories as locally complete inductive groupoids. We show that in the case of compact inverse categories, this takes the particularly nice form of a semilattice of compact groupoids. Moreover, one-object compact inverse categories are exactly commutative inverse monoids. Compact groupoids, in turn, are determined in particularly simple terms of 3-cocycles by Baez-Lauda.

Date: January 13, 2023. Supported by EPSRC Fellowship EP/R044759/1. We thank Peter Hines for pointing out that the proof of Proposition 9 could be simplified, Martti Karvonen for the idea of the proof of Lemma 23, and Phil Scott for pointing out Theorem 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Robin, in particular, would like to acknowledge Samson’s influence which stretches back to well before the mutual interests discussed in this article. He recalls fondly a “hike” with Samson in Lake Louise, during a Higher Order Banff workshop meeting in the early 1990s. Samson, oblivious to the spectacular scenery, spent the hike explaining his ideas on interaction categories (Abramsky, 1993).

References

  • Abramsky, S. (1993). Interaction categories. In G. Burn, S. Gay, & M. Ryan, (Eds.). Theory and formal methods. Berlin: Springer (1993).

    Google Scholar 

  • Abramsky, S. (2004). High-level methods for quantum computation and information. In Logic in computer science (pp. 410–414). IEEE Computer Society.

    Google Scholar 

  • Abramsky, S. (2005). Abstract scalars, loops, and free traced and strongly compact closed categories. In Conference on Algebra and Coalgebra (Vol. 3629, pp. 1–31). Lecture notes in computer science. Berlin: Springer.

    Google Scholar 

  • Abramsky, S. (2008). Mathematics of Quantum Computing and Technology. Temperley-Lieb algebra: From knot theory to logic and computation via quantum mechanics (pp. 415–458). Taylor and Francis (2008).

    Google Scholar 

  • Abramsky, S. (2008). No-cloning in categorical quantum mechanics. In Semantic techniques for quantum computation (pp. 1–28). Cambridge University Press, Cambridge.

    Google Scholar 

  • Abramsky, S., & Coecke, B. (2004). A categorical semantics of quantum protocols. In Logic in computer science (Vol. 19, pp. 415–425). IEEE Computer Society.

    Google Scholar 

  • Abramsky, S., & Heunen, C. (2012). Clifford lectures (Vol. 71, pp. 1–24), H*-algebras and nonunital Frobenius algebras: First steps in infinite-dimensional categorical quantum mechanics. American Mathematical Society.

    Google Scholar 

  • Abramsky, S., & Heunen, C. (2016). Logic and algebraic structures in quantum computing and information. Operational theories and categorical quantum mechanics (pp. 88–122). Number 45 in lecture notes in logic. Cambridge University Press, Cambridge.

    Google Scholar 

  • Abramsky, S. (2005). A structural approach to reversible computation. Theoretical Computer Science, 347(3), 441–464.

    Article  Google Scholar 

  • Abramsky, S. (2013). Coalgebras, chu spaces, and representations of physical systems. Journal of Philosophical Logic, 42(3), 551–574.

    Article  Google Scholar 

  • Abramsky, S., & Coecke, B. (2005). Abstract physical traces. Theory and Applications of Categories, 14, 111–124.

    Google Scholar 

  • Abramsky, S., & Duncan, R. (2006). A categorical quantum logic. Mathematical Structures in Computer Science, 16(3), 469–489.

    Article  Google Scholar 

  • Amini, M., Elliott, G. A., & Golestani, N. (2015). The category of Bratteli diagrams. Canadian Journal of Mathematics, 67, 990–1023.

    Article  Google Scholar 

  • Baez, J. C., & Dolan, J. (1995). Higher-dimensional algebra and topological quantum field theory. Journal of Mathematical Physics, 36, 6073–6105.

    Article  Google Scholar 

  • Baez, J. C., & Lauda, A. (2004). Higher-dimensional algebra V: 2-groups. Theory and Applications of Categories, 12, 423–491.

    Google Scholar 

  • Clifford, A. H. (1941). Semigroups admitting relative inverses. Annals of Mathematics, 42(4), 1037–1049.

    Article  Google Scholar 

  • Cockett, J. R. B., & Lack, S. (2002). Restriction categories I: Categories of partial maps. Theoretical Computer Science, 270(1–2), 223–259.

    Article  Google Scholar 

  • DeWolf, D., & Pronk, D. (2018). The Ehresmann-Schein-Nambooripad theorem for inverse categories. Theory and Applications of Categories, 33(27), 813–831.

    Google Scholar 

  • Duncan, J., & Paterson, A. L. T. (1985). C*-algebras of inverse semigroups. Proceedings of the Edinburgh Mathematical Society, 28, 41–58.

    Article  Google Scholar 

  • Ehresmann, C. (1958). Gattungen von lokalen Strukturen. Jahresbericht der Deutschen Mathematiker-Vereinigung, 60, 49–77.

    Google Scholar 

  • Ehresmann, C. (1960). Catégories inductives et pseudogroupes. Annales de l’Institut Fourier, 10, 307–332.

    Article  Google Scholar 

  • Giles, B. G. (2014). An investigation of some theoretical aspects of reversible computing. Ph.D. thesis, University of Calgary.

    Google Scholar 

  • Gran, M., Heunen, C., & Tull, S. (2019). Monoidal characterisation of groupoids and connectors. Topology and Applications.

    Google Scholar 

  • Haghverdi, E., & Scott, P. (2006). A categorical model for the geometry of interaction. Theoretical Computer Science, 350, 252–274.

    Article  Google Scholar 

  • Hayashi, S. (1985). Adjunction of semifunctors: Categorical structures in nonextensional lambda calculus. Theoretical Computer Science, 41, 95–104.

    Article  Google Scholar 

  • Heunen, C., & Vicary, J. (2019). Categories for Quantum Theory. Oxford: Oxford University Press.

    Google Scholar 

  • Heunen, C., Contreras, I., & Cattaneo, A. S. (2013). Relative Frobenius algebras are groupoids. Journal of Pure and Applied Algebra, 217, 114–124.

    Article  Google Scholar 

  • Hines, P. (1997). The algebra of self-similarity and its applications. Ph.D. thesis, University of Wales.

    Google Scholar 

  • Hoehnke, H. -J. (1989). On certain classes of categories and monoids constructed from abstract Mal’cev clones II. In Conference on Universal Algebra and Related Topics (Vol. B62, pp. 30–64). Potsdamer Forschungen.

    Google Scholar 

  • Jarek, P. (1964). Commutative regular semigroups. Colloquium Mathematicum, XI, I(2), 195–208.

    Article  Google Scholar 

  • Joyal, A., Street, R., & Verity, D. (1996). Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society, 119(3), 447–468.

    Article  Google Scholar 

  • Kaarsgaard, R., Axelsen, H. B., & Glück, R. (2017). Join inverse categories and reversible recursion. Journal of Logical and Algebraic Methods in Programming, 87, 33–50.

    Article  Google Scholar 

  • Kastl, J. (1979). Algebraische Modelle, Kategorien und Gruppoide, chapter Inverse categories (Vol. 7, pp. 51–60). Studien zur Algebra und ihre Anwendungen. Akademie-Verlag.

    Google Scholar 

  • Kumjian, A., & Pask, D. (2000). Higher rank graph C*-algebras. New York Journal of Mathematics, 6, 1–20.

    Google Scholar 

  • Lawson, M. V. (1998). Inverse semigroups. World Scientific.

    Google Scholar 

  • Linckelmann, M. (2013). On inverse categories and transfer in cohomology. Proceedings of the Edinburgh Mathematical Society, 56, 187–210.

    Article  Google Scholar 

  • Moliner, P. E., Heunen, C., & Tull, S. (2019). Tensor topology. Journal of Pure and Applied Algebra, 224(10), 106378.

    Google Scholar 

  • Nambooripad, K. S. S. (1979). Structure of regular semigroups. American Mathematical Society.

    Google Scholar 

  • Romanowska, A. B., & Smith, J. D. H. (1997). Duality for semilattice representations. Journal of Pure and Applied Algebra, 115(3), 289–308.

    Article  Google Scholar 

  • Schein, B. M. (1979). On the theory of inverse semigroups and generalised groups. American Mathematical Society Translations, 113(2), 89–122.

    Google Scholar 

  • Schwab, E., & Schwab, E. D. (2015). On inverse categories with split idempotents. Archivum Mathematicum, 51, 13–25.

    Article  Google Scholar 

  • Seely, R. A. G. (1989). Linear logic, *-autonomous categories and cofree coalgebras. Contemporary Mathematics, 92, 371–382.

    Article  Google Scholar 

  • Starling, C. (2016). C*-algebras of Boolean inverse monoids—Traces and invariant means. Documenta Mathematica, 21, 809–840.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Heunen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cockett, R., Heunen, C. (2023). Compact Inverse Categories. In: Palmigiano, A., Sadrzadeh, M. (eds) Samson Abramsky on Logic and Structure in Computer Science and Beyond. Outstanding Contributions to Logic, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-24117-8_22

Download citation

Publish with us

Policies and ethics