Skip to main content

Analyze the Impact of Weather Parameters for Crop Yield Prediction Using Deep Learning

  • Conference paper
  • First Online:
Big Data Analytics (BDA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13773))

Included in the following conference series:

Abstract

Accurate crop yield prediction is one of the most important aspects for the agricultural policy decision for the policy makers and the farmers. However, prediction of crop yield depends on many parameters such as weather, soil, seed quality and farm practices. Importance of different parameters on crop is varying from crop to crop and region to region. With the availability of satellite images along with statistical data, deep leaning based model can capture growth of crop over temporal data. In this paper, we introduce informal methods to analyze and measure the impact of weather on the crop yield prediction using remote sensing images. Here, we applied Convolutional Neural Network (CNN) - Long Short-Term Memory (LSTM) based model over a large spatial and temporal data collected during crop growth season. We compared our model with two other models and found that it confers performance improvement over other models. From the experimental result, we dissect that inclusion of weather increase yield prediction and crop growth is highly correlated on the weather parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. PIB. https://www.pib.gov.in/PressReleasePage.aspx?PRID=1741942. Accessed 21 Apr 2022

  2. FAO. https://www.fao.org/interactive/state-of-food-security-nutrition/en/. Accessed 22 Apr 2022

  3. Annual Report 2020–21 Online Link. https://agricoop.nic.in/sites/default/files/Web%20copy%20of%20AR%20%28Eng%29_7.pdf. Accessed 22 Aug 2022

  4. Bussay, A., Velde, M., Fumagalli, D., Seguini, L.: Improving operational maize yield forecasting in Hungary. Agric. Syst. 141, 94–106 (2015). https://doi.org/10.1016/j.agsy.2015.10.001

    Article  Google Scholar 

  5. Shin, J.Y., Kim, K., Ha, J.-C.: Seasonal forecasting of daily mean air temperatures using a coupled global climate model and machine learning algorithm for fieldscale agricultural management. Agric. For. Meteorol. 281, 107858 (2020). https://doi.org/10.1016/j.agrformet.2019.107858

    Article  Google Scholar 

  6. Karlsen, S.S.: Automated front detection-using computer vision and machine learning to explore a new direction in automated weather forecasting. The University of Bergen (2017)

    Google Scholar 

  7. Nguyen, H.T.T., Doan, T.M., Tomppo, E., McRoberts, R.E.: Land use/land cover mapping using multitemporal Sentinel-2 imagery and four classification methods—a case study from Dak Nong, Vietnam. Remote Sens. 12(9), 1367 (2020)

    Article  Google Scholar 

  8. IPCC (2013b). Summary for Policymakers, Book Section SPM, pp. 1–30. Cambridge University Press, Cambridge

    Google Scholar 

  9. Fisher, R.A.: The influence of rainfall on the yield of wheat at Rothamsted. Philos. Trans. R. Soc. Lond. Ser. B 213, 89–142 (1925)

    Article  Google Scholar 

  10. Baier W.: Crop weather models and their use in yield assessments. WMO Technical Note, p. 48, no. 151. World Meteorological Organization, Geneva (1977)

    Google Scholar 

  11. Müller, C., et al.: Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. Discuss. 10, 1403–1422 (2016). https://doi.org/10.5194/gmd-2016-207

    Article  Google Scholar 

  12. Mistry, M.N., Wing, I.S., De Cian, E.: Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change. Environ. Res. Lett. 12, 75007 (2017). https://doi.org/10.1088/1748-9326/aa788c

    Article  Google Scholar 

  13. Vogel, M.M., Zscheischler, J., Wartenburger, R., Dee, D., Seneviratne, S.I.: Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth’s Future 7, 692–703 (2017)

    Article  Google Scholar 

  14. Vogel, E., et al.: The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 54010 (2019). https://doi.org/10.1088/1748-9326/ab154b

    Article  Google Scholar 

  15. Prasad, A.K., Chai, L., Singh, R.P., Kafatos, M.: Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 8(1), 26–33 (2006)

    Google Scholar 

  16. Khaki, S., Wang, L.: Crop yield prediction using deep neural networks. Front. Plant Sci. 10, 621 (2019). https://doi.org/10.3389/fpls.2019.00621

    Article  Google Scholar 

  17. Kamir, E., Hochman, Z.: Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS J. Photogramm. Remote Sens. 160, 124–135 (2022)

    Article  Google Scholar 

  18. Zipper, S.C., Qiu, J., Kucharik, C.J.: Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes. Environ. Res. Lett. 11, 094021 (2016)

    Article  Google Scholar 

  19. Schauberger, B., et al.: Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017)

    Article  Google Scholar 

  20. Kalcic, M.M., Muenich, R.L., Basile, S., Steiner, A.L., Kirchhoff, C., Scavia, D.: Climate change and nutrient loading in the western Lake Erie basin: warming can counteract a wetter future. Environ. Sci. Technol. 53, 7543–7550 (2019)

    Article  Google Scholar 

  21. Yadav, K., Geli, H.M.E.: Prediction of Crop Yield for New Mexico based on climate and remote sensing data for the 1920–2019 period. Land 10, 1389 (2021). https://doi.org/10.3390/land10121389

    Article  Google Scholar 

  22. Li, W., Liu, K., Yan, L., Cheng, F., Lv, Y., Zhang, L.: FRD-CNN: Object detection based on small-scale convolutional neural networks and feature reuse. Sci. Rep. 9(1), 16294 (2019)

    Article  Google Scholar 

  23. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  24. Gangopadhyay, T., Locurto, A., Michael, J.B., Sarkar, S.: Deep learning algorithms for detecting combustion instabilities. In: Mukhopadhyay, A., Sen, S., Basu, D.N., Mondal, S. (eds.) Dynamics and Control of Energy Systems. EES, pp. 283–300. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0536-2_13

    Chapter  Google Scholar 

  25. Jiang, H., Hu, H., Zhong, R., Xu, J., Xu, J., Huang, J., et al.: A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level. Glob. Change Biol. 26(3), 1754–1766 (2020). https://doi.org/10.1111/gcb.14885

    Article  Google Scholar 

  26. Malik, D., Singh, D.: Dynamics of production, processing and export of wheat in India. J. Food Secur. 1, 1–12 (2010)

    Google Scholar 

  27. Food and Agricultural Organization (F.A.O.). https://www.fao.org/india/fao-in-india/india-at-aglance/en/. Accessed 22 Apr 2022

  28. Annual Yield Prediction Data Available. https://aps.dac.gov.in/APY/Index.htm. Accessed 22 May 2022

  29. MODIS. https://modis.gsfc.nasa.gov/about/. Accessed 30 July 2022

  30. OpenWeather Portal Page. https://openweathermap.org/. Accessed 16 Aug 2022

  31. Vermote, E.: Mod09a1 modis/terra surface reflectance 8-day l3 global 500 m sin grid v006. In: NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD09A1.006

  32. Wan, Z., Hook, S., Hulley, G.: Myd11a2 modis/aqua land surface temperature/emissivity 8-day l3 global 1 km sin grid v006. In: NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MYD11A2.006

  33. Friedl, M., Sulla-Menashe, D.: Mcd12q1 modis/terra+aqua land cover type yearly l3 global 500 m sin grid v006. In: NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006

  34. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  35. Sun, J., Di, L., Sun, Z., Shen, Y., Lai, Z.: County-level soybean yield prediction using deep CNN-LSTM model. Sensors 19(20), 4363 (2019). https://doi.org/10.3390/s19204363

    Article  Google Scholar 

  36. Tian, H., Wang, P., Tansey, K., Zhang, J., Zhang, S., Li, H.: An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong plain, PR China. Agric. For. Meteorol. 310, 108629 (2021) ISSN 0168–1923. https://doi.org/10.1016/j.agrformet.2021.108629

  37. Sun, J., Lai, Z., Di, L., Sun, Z., Tao, J., Shen, Y.: Multilevel deep learning network for county-level corn yield estimation in the U.S. Corn Belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 5048–5060 (2020). https://doi.org/10.1109/JSTARS.2020.3019046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragneshkumar Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, P., Chaudhary, S., Parmar, H. (2022). Analyze the Impact of Weather Parameters for Crop Yield Prediction Using Deep Learning. In: Roy, P.P., Agarwal, A., Li, T., Krishna Reddy, P., Uday Kiran, R. (eds) Big Data Analytics. BDA 2022. Lecture Notes in Computer Science, vol 13773. Springer, Cham. https://doi.org/10.1007/978-3-031-24094-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24094-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24093-5

  • Online ISBN: 978-3-031-24094-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics