Skip to main content

Ultrawide Field Imaging in Retinal Diseases

  • Chapter
  • First Online:
Digital Eye Care and Teleophthalmology

Abstract

The introduction of ultra-widefield (UWF) retinal imaging has advanced our approach to apprehend the common retinal diseases with peripheral manifestations. The ability to visualize and evaluate the peripheral retinal details in a panoramic view has enriched the way the retinal pathologies are perceived. This chapter will provide an overview of the evolution of the retinal imaging system and will focus on the present-day clinical utility and emerging novel applications of UWF imaging modalities on retinal diseases like diabetic retinopathy, retinal vein occlusion, and pediatric retinal evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abràmoff M, Kay CN. Chapter 6—image processing. In: Ryan SJ, Sadda SR, Hinton DR, Schachat AP, Sadda SR, Wilkinson CP, Wiedemann P, Schachat AP, editors. Retina, 5th edn. W.B. Saunders; 2013, p. 151–76.

    Google Scholar 

  2. Abràmoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE Rev Biomed Eng. 2010;10(3):169–208.

    Article  Google Scholar 

  3. Cs F. Centenary of Babbage’s ophthalmoscope. The Optician. 1947;113(2925):246.

    Google Scholar 

  4. Keeler CR. 150 years since Babbage’s ophthalmoscope. Arch Ophthalmol. 1997;115(11):1456–7.

    Article  CAS  PubMed  Google Scholar 

  5. Helmholtz HV. Description of the ophthalmoscope. In: Description of an eye mirror. Berlin, Heidelberg: Springer; 1851. p. 28–34.

    Google Scholar 

  6. Bennett TJ. Milestones, rivalries and controversy, part III. Hist Ophthal Photogr Blog Milestone. 2013. Archived from the original on 2016–03–04. Retrieved 2019–03–10.

    Google Scholar 

  7. Jackman WT, Webster JD. On photographing the retina of the living human eye. Philadelphia Photogr. 1886;23(275):275–6.

    Google Scholar 

  8. Gerloff O. Uber die photographie des augenhintergrundes. Klin Monatsblätter Augenheilkunde. 1891;29:397–403.

    Google Scholar 

  9. Gullstrand A. Neue methoden der reflexlosen ophthalmoskopie. Berichte Deutsche Ophthalmologische Gesellschaft. 1910;36(8):326.

    Google Scholar 

  10. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24(1):82–6.

    Article  CAS  PubMed  Google Scholar 

  11. Pomerantzeff O. Equator-plus camera. Invest Ophthalmol Vis Sci. 1975;14(5):401–6.

    CAS  Google Scholar 

  12. Pomerantzeff O. Wide-angle noncontact and small-angle contact cameras. Invest Ophthalmol Vis Sci. 1980;19(8):973–9.

    CAS  PubMed  Google Scholar 

  13. Ciardella A, Brown DAgarwal A. Wide field imaging Fundus Fluorescein and Indocyanine Green Angiography: A Textbook and Atlas. New York: Slack Inc.; 2007. p. 79–83.

    Google Scholar 

  14. Rosen E. Fundus camera. Trans Ophthalmol Soc U K. 1981;101:146–8.

    CAS  PubMed  Google Scholar 

  15. Diabetic Retinopathy Study Research Group. Diabetic retinopathy study report number 6. Design, methods, and baseline results. Report number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the diabetic retinopathy. Invest Ophthalmol Vis Sci. 1981;21:1–226.

    Google Scholar 

  16. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology. 1991;98(5):786–806.

    Google Scholar 

  17. Lotmar W. A fixation lamp for panoramic fundus pictures (author’s transl. Klin Monatsbl Augenheilkd. 1977;170(5):767–74.

    CAS  PubMed  Google Scholar 

  18. Gangaputra S, Pak JW, Peng Q, Hubbard LD, Thayer D, Krason Z, Joyce J, Danis RP, Studies Of The Ocular Complications Of Aids Research Group. Transition from film to digital fundus photography in the Longitudinal Studies of the Ocular Complications of AIDS (LSOCA). Retina (Philadelphia, Pa.). 2012;32(3):600.

    Google Scholar 

  19. https://www.aao.org/eyenet/article/nomenclature-and-guidelines-for-widefield-imaging.

  20. Nguyen NV, Vigil EM, Hassan M, Halim MS, Baluyot SC, Guzman HA, Afridi R, Do DV, Sepah YJ. Comparison of montage with conventional stereoscopic seven-field photographs for assessment of ETDRS diabetic retinopathy severity. Int J Retina Vitreous. 2019;5(1):1–8.

    Google Scholar 

  21. Choudhry N, Duker JS, Freund KB, Kiss S, Querques G, Rosen R, Sadda SR, et al. Classification and guidelines for widefield imaging: recommendations from the International Widefield Imaging Study Group. Ophthalmology Retina. 2019;3(10):843–9.

    Google Scholar 

  22. Falavarjani KG, Tsui I, Sadda SR. Ultra-wide-field imaging in diabetic retinopathy. Vision Res. 2017;1(139):187–90.

    Article  Google Scholar 

  23. Dhaliwal C, Wright E, Graham C, McIntosh N, Fleck BW. Wide-field digital retinal imaging versus binocular indirect ophthalmoscopy for retinopathy of prematurity screening: a two-observer prospective, randomised comparison. Br J Ophthalmol. 2009;93(3):355–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shields CL, Materin M, Shields JA. Panoramic imaging of the ocular fundus. Arch Ophthalmol. 2003;121(11):1603–7.

    Article  PubMed  Google Scholar 

  25. Staurenghi G, Viola F, Mainster MA, Graham RD, Harrington PG. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol. 2005;123(2):244–52.

    Article  PubMed  Google Scholar 

  26. Reeves GM, Kumar N, Beare NA, Pearce IA. Use of Staurenghi lens angiography in the management of posterior uveitis. Acta Ophthalmol. 2013;91(1):48–51.

    Article  PubMed  Google Scholar 

  27. Oishi A, Hidaka J, Yoshimura N. Quantification of the image obtained with a wide-field scanning ophthalmoscope. Invest Ophthalmol Vis Sci. 2014;55(4):2424–31.

    Article  PubMed  Google Scholar 

  28. Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S. Ultra–wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32(4):785–91.

    Article  PubMed  Google Scholar 

  29. Tan CS, Chew MC, van Hemert J, Singer MA, Bell D, Sadda SR. Measuring the precise area of peripheral retinal non-perfusion using ultra-widefield imaging and its correlation with the ischaemic index. Br J Ophthalmol. 2016;100(2):235–9.

    Article  PubMed  Google Scholar 

  30. Matsui Y, Ichio A, Sugawara A, Uchiyama E, Suimon H, Matsubara H, Sugimoto M, Ikesugi K, Kondo M. Comparisons of effective fields of two ultra-widefield ophthalmoscopes, Optos 200Tx and Clarus 500. Biomed Res Int. 2019;5:2019.

    Google Scholar 

  31. Howe L. Photography of the Interior of the Eye. Trans Am Ophthalmol Soc. 1887;4:568.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Early Treatment Diabetic Retinopathy Study Research Group. Fundus photographic risk factors for progression of diabetic retinopathy: ETDRS report number 12. Ophthalmology. 1991;98(5):823–33.

    Google Scholar 

  33. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT; Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003 Sep;110(9):1677–82.

    Google Scholar 

  34. Jaeb Center for Health Research. Protocol AA. Accessed August 13, 2019. https://public.jaeb.org/drcrnet/stdy/239.

  35. DRCRnet. Peripheral diabetic retinopathy (DR) lesions on ultrawide-field fundus images and risk of DR worsening over time. 2016. http://drcrnet.jaeb.org/Studies.aspx?RecID=239.

  36. Kernt M, Hadi I, Pinter F, Seidensticker F, Hirneiss C, Haritoglou C, Kampik A, Ulbig MW, Neubauer AS. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography. Diabetes Care. 2012;35(12):2459–63.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Silva PS, Cavallerano JD, Sun JK, et al Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology. 2013;120(12):2587–95.

    Google Scholar 

  38. Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy. ClinicalOphthalmol. 2015;9:527–31.

    Google Scholar 

  39. Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina (Philadelphia, Pa). 2012;32(4):785–791.

    Google Scholar 

  40. Manjunath V, Papastavrou V, Steel DHW, Menon G, Taylor R, Peto T, et al. Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening. Eye (London, England). 2015;29(3), 416–423.

    Google Scholar 

  41. Talks SJ, Manjunath V, Steel DHW, Peto T, Taylor R. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. Br J Ophthalmol. 2015;99(12):1606–9.

    Article  PubMed  Google Scholar 

  42. Rasmussen ML, Broe R, Frydkjaer-Olsen U, Olsen BS, Mortensen HB, Peto T, et al. Comparison between Early Treatment Diabetic Retinopathy Study 7-field retinal photos and non-mydriatic, mydriatic and mydriatic steered widefield scanning laser ophthalmoscopy for assessment of diabetic retinopathy. J Diabetes Complications. 2015;29(1):99–104.

    Google Scholar 

  43. Silva PS, Dela Cruz AJ, Ledesma MG, Van Hemert J, Radwan A, Cavallerano JD, et al. Diabetic retinopathy severity and peripheral lesions are associated with nonperfusion on ultrawide field angiography. Ophthalmology. 2015;122(12):2465–72.

    Google Scholar 

  44. Aiello LP, Odia I, Glassman AR, Melia M, Jampol LM, Bressler NM, Kiss S, Silva PS, Wykoff CC, Sun JK, Diabetic Retinopathy Clinical Research Network. Comparison of early treatment diabetic retinopathy study standard 7-Field imaging with Ultrawide-Field imaging for determining severity of diabetic retinopathy. JAMA Ophthalmol. 2019 Jan 1;137(1):65–73.

    Google Scholar 

  45. Pisig AU, Sampani K, Elmasry MA, Aldairy Y, Robertson G, Fleming A, Pitoc C, Rhee J, Sun JK, Silva PS, Aiello LP. Regional vessel caliber, retinal oximetry and predominantly peripheral diabetic retinal lesions as surrogate markers of nonperfusion on ultrawide field angiography in diabetic eyes. Invest Ophthalmol Vis Sci. 2018;59(9):3448.

    Google Scholar 

  46. Bhagat N, Grigorian RA, Tutela A, Zarbin MA. Diabetic macular edema: pathogenesis and treatment. Surv Ophthalmol. 2009;54(1):1–32.

    Google Scholar 

  47. Oliver SC, Schwartz SD. Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography. Semin Ophthalmol. 2010 Jan-Mar;25(1–2):27–33.

    Google Scholar 

  48. Sim DA, Keane PA, Rajendram R, Karampelas M, Selvam S, Powner MB, Fruttiger M, Tufail A, Egan CA. Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am J Ophthalmol. 2014;158(1):144-153.e1.

    Article  PubMed  Google Scholar 

  49. Rabiolo A, Parravano M, Querques L, Cicinelli MV, Carnevali A, Sacconi R, Centoducati T, Vujosevic S, Bandello F, Querques G. Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin Ophthalmol. 2017;11:803–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Patel RD, Messner LV, Teitelbaum B, Michel KA, Hariprasad SM. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol. 2013;155(6):1038–44.

    Article  PubMed  Google Scholar 

  51. Boss JD, Jiang A, Srivastava S, Jamie Reese, Justis P Ehlers; Correlation of Anatomic Features with Panretinal Ischemic Index in Diabetic Retinopathy

    Google Scholar 

  52. Ghasemi Falavarjani K, Tsui I, Sadda SR. Ultra-wide-field imaging in diabetic retinopathy. Vision Res. 2017;139:187–90.

    Google Scholar 

  53. Muqit MM, Marcellino GR, Henson DB, Young LB, Patton N, Charles SJ, Turner GS, Stanga PE. Optos-guided pattern scan laser (Pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. Acta Ophthalmol. 2013;91(3):251–8.

    Article  PubMed  Google Scholar 

  54. Reddy S, Hu A, Schwartz SD. Ultra wide field fluorescein angiography guided targeted retinal photocoagulation (TRP). Semin Ophthalmol. 2009;24(1):9–14.

    Google Scholar 

  55. Muqit MM, Young LB, McKenzie R, John B, Marcellino GR, Henson DB, Turner GS, Stanga PE. Pilot randomised clinical trial of Pascal TargETEd Retinal versus variable fluence PANretinal 20 ms laser in diabetic retinopathy: PETER PAN study. Br J Ophthalmol. 2013;97(2):220–7.

    Article  PubMed  Google Scholar 

  56. Brown DM, Ou WC, Wong TP, Kim RY, Croft DE, Wykoff CC, DAVE Study Group. Targeted retinal photocoagulation for diabetic macular edema with peripheral retinal nonperfusion: three-year randomized DAVE trial. Ophthalmology. 2018;125(5):683–90.

    Google Scholar 

  57. Querques L, Parravano M, Sacconi R, Rabiolo A, Bandello F, Querques G. Ischemic index changes in diabetic retinopathy after intravitreal dexamethasone implant using ultra-widefield fluorescein angiography: a pilot study. Acta Diabetol. 2017;54(8):769–73.

    Article  CAS  PubMed  Google Scholar 

  58. Levin AM, Rusu I, Orlin A, Gupta MP, Coombs P, D’Amico DJ, Kiss S. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections. Clinical Ophthalmology (Auckland, NZ). 2017;11:193.

    Article  CAS  Google Scholar 

  59. Borrelli E, Parravano M, Querques L, Sacconi R, Giorno P, De Geronimo D, Bandello F, Querques G. One-year follow-up of ischemic index changes after intravitreal dexamethasone implant for diabetic macular edema: an ultra-widefield fluorescein angiography study. Acta Diabetol. 2020;57(5):543–8.

    Article  CAS  PubMed  Google Scholar 

  60. Silva PS, Horton MB, Clary D, Lewis DG, Sun JK, Cavallerano JD, Aiello LP. Identification of diabetic retinopathy and ungradable image rate with ultrawide field imaging in a national teleophthalmology program. Ophthalmology. 2016;123(6):1360–7.

    Article  PubMed  Google Scholar 

  61. Silva PS, Cavallerano JD, Tolls D, Omar A, Thakore K, Patel B, Sehizadeh M, Tolson AM, Sun JK, Aiello LM, Aiello LP. Potential efficiency benefits of nonmydriatic ultrawide field retinal imaging in an ocular telehealth diabetic retinopathy program. Diabetes Care. 2014;37(1):50–5.

    Article  PubMed  Google Scholar 

  62. Silva PS, Cavallerano JD, Tolson AM, Rodriguez J, Rodriguez S, Ajlan R, Tolls D, Patel B, Sehizadeh M, Thakore K, Sun JK. Real-time ultrawide field image evaluation of retinopathy in a diabetes telemedicine program. Diabetes Care. 2015;38(9):1643–9.

    Article  CAS  PubMed  Google Scholar 

  63. Hussain N, Edraki M, Tahhan R, et al. Telemedicine for diabetic retinopathy screening using an ultra-widefield fundus camera. Clin Ophthalmol. 2017;11:1477–1482. Published 2017 Aug 14. doi:https://doi.org/10.2147/OPTH.S135287

  64. McNabb RP, Grewal DS, Mehta R, Schuman SG, Izatt JA, Mahmoud TH, Jaffe GJ, Mruthyunjaya P, Kuo AN. Wide field of view swept-source optical coherence tomography for peripheral retinal disease. Br J Ophthalmol. 2016;100(10):1377–82.

    Article  PubMed  Google Scholar 

  65. Pichi F, Smith SD, Abboud EB, Neri P, Woodstock E, Hay S, Levine E, Baumal CR. Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2020;258:1901–9.

    Article  PubMed  Google Scholar 

  66. Yang J, Zhang B, Wang E, Xia S, Chen Y. Ultra-wide field swept-source optical coherence tomography angiography in patients with diabetes without clinically detectable retinopathy. BMC Ophthalmol. 2021;21(1):1–8.

    Article  Google Scholar 

  67. Sawada O, Ichiyama Y, Obata S, et al. Comparison between wide-angle OCT angiography and ultra-wide feld fuorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2018;256:1275–80.

    Article  Google Scholar 

  68. Wu L, Fernandez-Loaiza P, Sauma J, Hernandez-Bogantes E, Masis M. Classifcation of diabetic retinopathy and diabetic macular edema. World J Diabetes. 2013;4:290–4.

    Google Scholar 

  69. Tsui I, Franco-Cardenas V, Hubschman JP, Yu F, Schwartz SD. Ultra wide field fluorescein angiography can detect macular pathology in central retinal vein occlusion. Ophthalmic Surg Lasers Imaging Retina. 2012;43(3):257–62.

    Article  Google Scholar 

  70. Hayreh SS. Classification of central retinal vein occlusion. Ophthalmology. 1983;90(5):458–74.

    Article  CAS  PubMed  Google Scholar 

  71. Virdi PS, Hayreh SS. Ocular neovascularization with retinal vascular occlusion: I. Association with experimental retinal vein occlusion. Archives Ophthalmol. 1982;100(2):331–41.

    Google Scholar 

  72. Singer M, Tan CS, Bell D, Sadda SR. Area of peripheral retinal nonperfusion and treatment response in branch and central retinal vein occlusion. Retina. 2014;34(9):1736–42.

    Article  PubMed  Google Scholar 

  73. Tsui I, Kaines A, Havunjian MA, Hubschman S, Heilweil G, Prasad PS, Oliver SC, Yu F, Bitrian E, Hubschman JP, Friberg T. Ischemic index and neovascularization in central retinal vein occlusion. Retina. 2011;31(1):105–10.

    Article  PubMed  Google Scholar 

  74. Tan CS, Li KZ, Sadda SR. Wide-field angiography in retinal vein occlusions. Int J Retina Vitreous. 2019;5(Suppl 1):18.

    Google Scholar 

  75. Croft DE, van Hemert J, Wykoff CC, Clifton D, Verhoek M, Fleming A, Brown DM. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2014;45(4):312–7.

    Article  PubMed  Google Scholar 

  76. Nicholson L, Vazquez- C, Patrao NV, Triantafyllopolou I, Bainbridge JW, Hykin PG, Sivaprasad S. Retinal nonperfusion in the posterior pole is associated with increased risk of neovascularization in central retinal vein occlusion. Am J Ophthalmol. 2017;182:118–25.

    Google Scholar 

  77. Prasad PS, Oliver SC, Coffee RE, Hubschman JP, Schwartz SD. Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion. Ophthalmology. 2010;117(4):780–4.

    Article  PubMed  Google Scholar 

  78. Kwon S, Wykoff CC, Brown DM, van Hemert J, Fan W, Sadda SR. Changes in retinal ischaemic index correlate with recalcitrant macular oedema in retinal vein occlusion: WAVE study. Br J Ophthalmol. 2018;102(8):1066–71.

    Article  PubMed  Google Scholar 

  79. Singer MA, Tan CS, Surapaneni KR, Sadda SR. Targeted photocoagulation of peripheral ischemia to treat rebound edema. Clinical Ophthalmology (Auckland, NZ). 2015;9:337.

    Article  Google Scholar 

  80. Goel S, Kumar A, Ravani RD, Chandra P, Chandra M, Kumar V. Comparison of ranibizumab alone versus ranibizumab with targeted retinal laser for branch retinal vein occlusion with macular edema. Indian J Ophthalmol. 2019;67(7):1105.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Aghdam KA, Reznicek L, Sanjari MS, Framme C, Bajor A, Klingenstein A, Kernt M, Seidensticker F. Peripheral retinal non-perfusion and treatment response in branch retinal vein occlusion. Int J Ophthalmol. 2016;9(6):858.

    Google Scholar 

  82. Lepore D, Molle F, Pagliara MM, Baldascino A, Angora C, Sammartino M, Quinn GE. Atlas of fluorescein angiographic findings in eyes undergoing laser for retinopathy of prematurity. Ophthalmology. 2011;118(1):168–75.

    Article  PubMed  Google Scholar 

  83. Agarwal K, Vinekar A, Chandra P, Padhi TR, Nayak S, Jayanna S, Panchal B, Jalali S, Das T. Imaging the pediatric retina: an overview. Indian J Ophthalmol. 2021;69(4):812.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Goyal P, Padhi TR, Das T, Pradhan L, Sutar S, Butola S, Behera UC, Jain L, Jalali S. Outcome of universal newborn eye screening with wide-field digital retinal image acquisition system: a pilot study. Eye. 2018;32(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  85. Schwartz SD, Harrison SA, Ferrone PJ, Trese MT. Telemedical evaluation and management of retinopathy of prematurity using a fiberoptic digital fundus camera. Ophthalmology. 2000;107(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  86. Lorenz B, Spasovska K, Elflein H, Schneider N. Wide-field digital imaging based telemedicine for screening for acute retinopathy of prematurity (ROP). Six-year results of a multicentre field study. Graefe's Archive for Clinical and Experimental Ophthalmology. 2009 Sep;247(9):1251–62.

    Google Scholar 

  87. Kim JW, Ngai LK, Sadda S, Murakami Y, Lee DK, Murphree AL. Retcam fluorescein angiography findings in eyes with advanced retinoblastoma. Br J Ophthalmol. 2014;98(12):1666–71.

    Article  PubMed  Google Scholar 

  88. Tahija SG, Hersetyati R, Lam GC, Kusaka S, McMenamin PG. Fluorescein angiographic observations of peripheral retinal vessel growth in infants after intravitreal injection of bevacizumab as sole therapy for zone I and posterior zone II retinopathy of prematurity. Br J Ophthalmol. 2014;98(4):507–12.

    Article  PubMed  Google Scholar 

  89. Bianciotto C, Shields CL, Iturralde JC, Sarici A, Jabbour P, Shields JA. Fluorescein angiographic findings after intra-arterial chemotherapy for retinoblastoma. Ophthalmology. 2012;119(4):843–9.

    Article  PubMed  Google Scholar 

  90. Vinekar A, Rao SV, Murthy S, Jayadev C, Dogra MR, Verma A, Shetty B. A novel, low-cost, wide-field, infant retinal camera,“Neo”: Technical and safety report for the use on premature infants. Translational vision science & technology. 2019 Mar 1;8(2):2.

    Google Scholar 

  91. Kothari N, Pineles S, Sarraf D, Velez F, Heilweil G, Holland G, McCannel CA, Onclinx T, McCannel TA, Sadda SR, Schwartz SD. Clinic-based ultra-wide field retinal imaging in a pediatric population. International journal of retina and vitreous. 2019;5(1):1–7.

    Google Scholar 

  92. Patel CK, Fung TH, Muqit MM, Mordant DJ, Brett J, Smith L, Adams E. Non-contact ultra-widefield imaging of retinopathy of prematurity using the Optos dual wavelength scanning laser ophthalmoscope. Eye. 2013;27(5):589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fung TH, Yusuf IH, Smith LM, Brett J, Weston L, Patel CK. Outpatient ultra wide-field intravenous fundus fluorescein angiography in infants using the Optos P200MA scanning laser ophthalmoscope. Br J Ophthalmol. 2014;98(3):302–4.

    Article  PubMed  Google Scholar 

  94. Patel CK, Fung TH, Muqit MM, Mordant DJ, Geh V. Non-contact ultra-widefield retinal imaging and fundus fluorescein angiography of an infant with incontinentia pigmenti without sedation in an ophthalmic office setting. J Am Assoc Pediatric Ophthalmol Strabismus. 2013;17(3):309–11.

    Article  Google Scholar 

  95. Kang KB, Wessel MM, Tong J, D’Amico DJ, Chan RP. Ultra-widefield imaging for the management of pediatric retinal diseases. J Pediatr Ophthalmol Strabismus. 2013;50(5):282–8.

    Article  PubMed  Google Scholar 

  96. Kumar V. Insights into autofluorescence patterns in Stargardt macular dystrophy using ultra-wide-field imaging. Graefes Arch Clin Exp Ophthalmol. 2017;255(10):1917–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Raman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A., Devishamani, C.S., Bharat, R.P.K., Mohan, S., Roy, R., Raman, R. (2023). Ultrawide Field Imaging in Retinal Diseases. In: Yogesan, K., Goldschmidt, L., Cuadros, J., Ricur, G. (eds) Digital Eye Care and Teleophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-24052-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24052-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24051-5

  • Online ISBN: 978-3-031-24052-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics