Skip to main content

Biomarkers and Bioimaging and Their Applications

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

Biomarkers stand out to be an important material in today’s scenario of pandemic and health crisis all over the world. These materials need to be effectively utilised for health monitoring and detection of highly infectious pathogens. In this aspect, high-intensity luminescence exhibited by II–VI nanomaterials can be a suitable choice for medical imaging of infected cells and tissues. However, the level of toxicity posed by the release of Cd2+ ions with the usage of CdSe, CdS or CdTe nanostructures for aforesaid applications is one of the major concerns. In this review, we have thus discussed the feasibility of incorporating important methodologies and techniques for overcoming these issues. First, we have described the process of up-conversion and down-conversion of these nanophosphors required for high-quality imaging in the infrared range. Next, we have illustrated various surface modification, capping and conjugation methodologies of nanoparticles for assessing and reducing the level of toxicity towards the implementation in in vitro and in vivo imaging. The review thus brings forth advanced researches, challenges and the current status of the biomarkers and paves the direction towards new technologies for developing novel materials suitable for high-quality biomedical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu L, Xu J, Li Q, Fan Z, Mei F, Zhou Y, Yan J, Chen Y. Enhanced performance of In2O3 nanowire field effect transistors with controllable surface functionalization of Ag nanoparticles. Nanotechnology. 2020;31:355703.

    Article  ADS  Google Scholar 

  2. Tran DP, Pham TTT, Wolfrum B, Offenhäusser A, Thierry B. CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization. Materials (Basel). 2018;11(5):785.

    Article  ADS  Google Scholar 

  3. Bayan S, Bhattacharya D, Mitra RK, Ray SK. Self-powered flexible photodetectors based on Ag nanoparticle-loaded g-C3N4 nanosheets and PVDF hybrids: role of plasmonic and piezoelectric effects. Nanotechnology. 2020;31:365401.

    Article  Google Scholar 

  4. Ghosh K, Kundu S, Halder N, Srujan M, Sengupta S, Chakrabarti S. Annealing of In0.45 Ga0.55As/GaAs quantum dots overgrown with large monolayer (11 ML) coverage for applications in thermally stable optoelectronic devices. Solid State Commun. 2011;151:1394.

    Article  ADS  Google Scholar 

  5. Wang X, Liu K, Chen X, Li B, Jiang M, Zhang Z, Zhao H, Shen D. Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl Mater Interfaces. 2017;9(6):5574–9.

    Article  Google Scholar 

  6. Choi MS, Park T, Kim WJ, Hur J. High-performance ultraviolet photodetector based on a zinc oxide nanoparticle@single-walled carbon nanotube heterojunction hybrid film. Nano. 2020;10(2):395.

    Google Scholar 

  7. Bharathi MV, Ghosh K, Paira P. Glycerol–water mediated centrifuge controlled green synthesis of oleic acid capped PbS quantum dots for live cell imaging. RSC Adv. 2017;7:40664.

    Article  ADS  Google Scholar 

  8. Gil HM, Price TW, Chelani K, Bouillard JSG, Calaminus SDJ, Stasiuk GJ. NIR-quantum dots in biomedical imaging and their future. iScience. 2021;24:102189.

    Article  ADS  Google Scholar 

  9. Mohamadi E, Moghaddasi M, Farahbakhsh A, Kazemic A. A quantum-dot-based fluoroassay for detection of food-borne pathogens. J Photochem Photobiol B. 2017;174:291.

    Article  Google Scholar 

  10. Bharathi MV, Maiti S, Sarkar B, Ghosh K, Paira P. Water-mediated green synthesis of PbS quantum dot and its glutathione and biotin conjugates for non-invasive live cell imaging. R Soc Open Sci. 2018;5:171614.

    Article  ADS  Google Scholar 

  11. Park HW, Kim DH. Intense visible luminescence in CdSe quantum dots by efficiency surface passivation with H2O molecules. J Nanomater. 2012;2012:892506.

    Article  Google Scholar 

  12. Borovaya MN, Burlaka OM, Naumenko AP, Blume YB, Yemets AI. Extracellular synthesis of luminescent CdS quantum dots using plant cell culture. Nanoscale Res Lett. 2016;11:100.

    Article  ADS  Google Scholar 

  13. Yang W, Yang H, Ding W, Zhang B, Zhang L, Wang L, Yuc M, Zhang Q. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method Ultrason. Sonochem. 2016;33:106.

    Article  Google Scholar 

  14. Cui Y, Zhang C, Song L, Yang J, Hu Z, Liu X. Facile synthesis of near-infrared emissive CdS quantum dots for live cells imaging. J Nanosci Nanotechnol. 2018;18:2271.

    Article  Google Scholar 

  15. Ma YY, Ding Hui H, Xiong HM. Folic acid functionalized ZnO quantum dots for targeted cancer cell imaging. Nanotechnology. 2015;26(30):305702.

    Article  ADS  Google Scholar 

  16. Singh N, Mehra RM, Kapoor A, Soga T. ZnO based quantum dot sensitized solar cell using CdS quantum dots. J Renew Sustain Energy. 2012;4:013110.

    Article  Google Scholar 

  17. Lin KF, Cheng HM, Hsu HC, Lin LJ, Hsieh WF. Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem Phys Lett. 2005;409:208.

    Article  ADS  Google Scholar 

  18. Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev. 2019;400:213042.

    Article  Google Scholar 

  19. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7.

    Article  Google Scholar 

  20. Tou M, Mei Y, Bai S, Luo Z, Zhang Y, Li Z. Depositing CdS nanoclusters on carbon-modified NaYF4:Yb, Tm upconversion nanocrystals for NIR-light enhanced photocatalysis. Nanoscale. 2016;8:553.

    Google Scholar 

  21. Balaji R, Reddy SKKL, Sharma V, Bhattacharyya K, Krishnan V. Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties. J Alloys Compd. 2017;724:481.

    Google Scholar 

  22. Luo Z, Zhang L, Zeng R, Su L, Tang D. Near-infrared light-excited core–core–shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal Chem. 2018;90(15):9568.

    Article  Google Scholar 

  23. Li Y, Li Y, Wang R, Xu Y, Zheng W. Enhancing upconversion luminescence by annealing processes and the high-temperature sensing of ZnO:Yb/Tm nanoparticles. New J Chem. 2017;41:7116.

    Article  Google Scholar 

  24. Anjana R, Subha PP, Kurias MK, Jayaraj MK. Enhanced green upconversion luminescence in ZnO:Er3+, Yb3+ on Mo6+ co-doping for temperature sensor application. Methods Appl Fluoresc. 2017;6:015005.

    Article  ADS  Google Scholar 

  25. Li YW, Dong L, Huang CX, Guo YC, Zhu Yang X, Xu YJ, Qian HS. Decoration of upconversion nanoparticles@mSiO2 core–shell nanostructures with CdS nanocrystals for excellent infrared light triggered photocatalysis. RSC Adv. 2016;6:54241.

    Article  ADS  Google Scholar 

  26. Slejko EA, Lughi V. Upconversion photoluminescence in colloidal CdSe/CdS nanocrystal-based solid films. Nano-Struct Nano-Objects. 2021;26:100742.

    Article  Google Scholar 

  27. Yen Kung P, Huang LW, Shen TW, Wang WL, Su YH, Lin MI. Down-conversion photoluminescence sensitizing plasmonic silver nanoparticles on ZnO nanorods to generate hydrogen by water splitting photochemistry. Appl Phys Lett. 2015;106:023114.

    Article  ADS  Google Scholar 

  28. Kundu J, Ghosh Y, Dennis AM, Htoon H, Hollingsworth JA. Giant nanocrystal quantum dots: stable down-conversion phosphors that exploit a large stokes shift and efficient shell-to-core energy relaxation. Nano Lett. 2012;12(6):3031.

    Article  ADS  Google Scholar 

  29. Chu H, Liu X, Liu J, Lei W, Li J, Wu T, Li P, Li H, Pan L. Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis. Appl Surf Sci. 2017;391(Part B):468.

    Article  ADS  Google Scholar 

  30. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2:1821.

    Article  Google Scholar 

  31. Vo NT, Ngo HD, Thi NPD, Thi KPN, Duong AP, Lam V. Stability investigation of ligand-exchanged CdSe/ZnS-Y (Y=3-mercaptopropionic acid or mercaptosuccinic acid) through zeta potential measurements. J Nanomater. 2016;2016:8564648.

    Article  Google Scholar 

  32. Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016.

    Article  ADS  Google Scholar 

  33. Pinaud F, King D, Moore HP, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc. 2004;126(19):6115.

    Article  Google Scholar 

  34. Hezinger AFE, Tessmar J, Göpferich A. Polymer coating of quantum dots--a powerful tool toward diagnostics and sensorics. Eur J Pharm Biopharm. 2008;68(1):138–52.

    Article  Google Scholar 

  35. Murcia MJ, Minner DE, Mustata GM, Ritchie K, Naumann CA. Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces. J Am Chem Soc. 2008;130(45):15054.

    Article  Google Scholar 

  36. Kodanek T, Banbela HM, Naskar S, Adel P, Bigalla NC, Dorfs D. Phase transfer of 1- and 2-dimensional Cd-based nanocrystals. Nanoscale. 2015;7:19300.

    Article  ADS  Google Scholar 

  37. Bharathi V, Roy N, Moharana P, Ghosh K, Paira P. Green synthesis of highly luminescent biotin-conjugated CdSe quantum dots for bioimaging applications. New J Chem. 2020;44:16891.

    Article  Google Scholar 

  38. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 2003;21:47.

    Article  Google Scholar 

  39. Gac SL, Vermes I, Berg AVD. Quantum dots based probes conjugated to Annexin V for photostable apoptosis detection and imaging. Nano Lett. 2006;6(9):1863.

    Article  ADS  Google Scholar 

  40. Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P. Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging. Chem Mater. 2009;21(12):2422.

    Article  Google Scholar 

  41. Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics. 2021;11(18):9133.

    Article  Google Scholar 

  42. Chen S, Yang X, Fu S, Tao XQ, Chaoxin Y, Jiang MY. A novel AuNPs colorimetric sensor for sensitively detecting viable salmonella typhimurium based on dual aptamers. Food Control. 2020;115:107281.

    Article  Google Scholar 

  43. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759.

    Article  ADS  Google Scholar 

  44. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconjug Chem. 2004;15(1):79.

    Article  Google Scholar 

  45. Yong KT, Hu R, Roy I, Ding H, Vathy LA, Bergey EJ, Mizuma M, Maitra A, Prasad PN. Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods. ACS Appl Mater Interfaces. 2009;1(3):710.

    Article  Google Scholar 

  46. Yang K, Cao YA, Shi C, Li ZG, Zhang FJ, Yang J, Zhao C. Quantum dot-based visual in vivo imaging for oral squamous cell carcinoma in mice. Oral Oncol. 2010;46(12):864.

    Article  Google Scholar 

  47. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y, Choyke PL. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 2007;7, 6:1711.

    Article  ADS  Google Scholar 

  48. Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat Mater. 2014;13:418.

    Article  ADS  Google Scholar 

  49. Ghosh K, Naresh Y, Reddy NS. Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3μm. J Appl Phys. 2012;112:024315.

    Article  ADS  Google Scholar 

  50. Srujan M, Ghosh K, Sengupta S, Chakrabarti S. Presentation and experimental validation of a model for the effect of thermal annealing on the photoluminescence of self-assembled InAs/GaAs quantum dots. J Appl Phys. 2010;107:123107.

    Article  ADS  Google Scholar 

  51. Barmparis GD, Kopidakis G, Remediakis IN. Shape-dependent single-electron levels for Au nanoparticles. Materials. 2016;9(4):301.

    Article  ADS  Google Scholar 

  52. Hu X, Zhang Y, Guzun D, Ware ME, Mazur YI, Lienau C, Salamo GJ. Photoluminescence of InAs/GaAs quantum dots under direct two-photon excitation. Sci Rep. 2020;10:10930.

    Article  ADS  Google Scholar 

  53. Xu S, Yang T, Lin J, Shen Q, Li J, Ye Y, Wang L, Zhou X, Chen E, Ye Y, Guo T. Precise theoretical model for quantum-dot color conversion. Opt Express. 2021;29:18654.

    Article  ADS  Google Scholar 

  54. Mirnajafizadeh F, Ramsey D, McAlpine S, Wang F, Stride JA. Nanoparticles for bioapplications: study of the cytotoxicity of water dispersible CdSe(S) and CdSe(S)/ZnO quantum dots. Nanomaterials (Basel). 2019;9(3):465.

    Article  Google Scholar 

  55. Ali D, Alarifi S, Alkahtani SH, Almansour M. Fresenius Environ Bull. 2018;27(6):4298.

    Google Scholar 

  56. Esparza JR, Mena AM, Sancha IG, Fragoso PR, de la Cruz GG, Mondragón R, Fragoso LR. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application. J Nanobiotechnol. 2015;13:83.

    Article  Google Scholar 

  57. Salmi A, Rouabhi R. Study of the toxicity of cadmium selenide (CdSe) on a model bio indicator Helix aspersa. Arch Environ Contam Toxicol. 2018;AESET-102. https://doi.org/10.29011/AESET-102.10000.

  58. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C. The cytotoxicity of cadmium based, aqueous phase - synthesized, quantum dots and its modulation by surface coating. Biomaterials. 2009;30(1):19.

    Article  Google Scholar 

  59. Mir IA, Alam H, Priyadarshini E, Meena R, Rawat K, Rajamani P, et al. Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ZnS core-shell quantum dots. J Nanopart Res. 2018;20:174.

    Article  Google Scholar 

  60. Agnew UM, Slesinger TL. Zinc toxicity. In: StatPearls. Treasure Island: StatPearls Publishing (2022). Available from: https://www.ncbi.nlm.nih.gov/books/NBK554548/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustab Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Ghosh, K. (2023). Biomarkers and Bioimaging and Their Applications. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_24

Download citation

Publish with us

Policies and ethics