Skip to main content

Abstract

Benign spinal intradural tumors are relatively rare and include intramedullary tumors with a favorable histology such as low-grade astrocytomas and ependymomas, as well as intradural extramedullary tumors such as meningiomas and schwannomas. The effect on the neural tissue is usually a combination of mass effect and neuronal involvement in cases of infiltrative tumors. The new understanding of molecular profiling of different tumors allowed us to better define central nervous system tumors and tailor treatment accordingly. The mainstay of management of many intradural spinal tumors is maximal safe surgical resection. This goal is more achievable with intradural extramedullary tumors; yet, with a meticulous surgical approach, many of the intramedullary tumors are amenable for safe gross-total or near-total resection. The nature of these tumors is benign; hence, a different way to measure outcome success is pursued and usually depends on functional rather than oncological or survival outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DA:

Diffuse infiltrative astrocytoma

GTR:

Gross-total resection

LGG:

Low-grade glioma

MISME:

Multiple inherited schwannomas, meningiomas, and ependymomas

MRI:

Magnetic resonance imaging

OS:

Overall survival

PFS:

Progression-free survival

RT:

Radiation therapy

SBRT:

Stereotactic body radiation therapy

SEER:

Surveillance, Epidemiology, and End Results

SRS:

Stereotactic radiosurgery

STR:

Sub-total resection

T1WI:

T1-weighted images

VHL:

Von Hippel-Lindau

WHO:

World Health Organization

References

  • Abdullah K et al (2015) Progression free survival and functional outcome after surgical resection of intramedullary ependymomas. J Clin Neurosci 22:1933–1937

    Article  PubMed  Google Scholar 

  • Abedalthagafi M et al (2014) Angiomatous meningiomas have a distinct genetic profile with multiple chromosomal polysomies including polysomy of chromosome 5. Oncotarget 5:10596–10606

    Google Scholar 

  • Ak H, Ulu M, Sar M, Albayram S, Aydin S, Uzan M (2006) Adult intramedullary mature teratoma of the spinal cord: review of the literature illustrated with an unusual example. Acta Neurochir (Wien) 148:663–669; discussion 669

    Google Scholar 

  • Amsbaugh M et al (2012) Proton therapy for spinal ependymomas: planning, acute toxicities, and preliminary outcomes. Int J Radiat Oncol Biol Phys 83:1419–1424

    Article  PubMed  Google Scholar 

  • Andreiuolo F et al (2010) Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro Oncol 12:1126–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardehali M (1990) Relative incidence of spinal canal tumors. Clin Neurol Neurosurg 92:237–243

    Article  CAS  PubMed  Google Scholar 

  • Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67:878–887

    Article  CAS  PubMed  Google Scholar 

  • Beert E et al (2012) Biallelic inactivation of NF1 in a sporadic plexiform neurofibroma. Genes Chromosomes Cancer 51:852–857

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma EK, Merel P, Bosch DA, Westerveld A, Delattre O, Thomas G, Hulsebos TJ (1994) Analysis of mutations in the SCH gene in schwannomas. Genes Chromosomes Cancer 11:7–14

    Article  CAS  PubMed  Google Scholar 

  • Birch BD et al (1996) Frequent type 2 neurofibromatosis gene transcript mutations in sporadic intramedullary spinal cord ependymomas. Neurosurgery 39:135–140

    Article  CAS  PubMed  Google Scholar 

  • Blümcke I, Müller S, Buslei R, Riederer BM, Wiestler OD (2004) Microtubule-associated protein-2 immunoreactivity: a useful tool in the differential diagnosis of low-grade neuroepithelial tumors. Acta Neuropathol 108:89–96

    Article  PubMed  Google Scholar 

  • Blümcke I et al (1999) The CD34 epitope is expressed in neoplastic and malformative lesions associated with chronic, focal epilepsies. Acta Neuropathol 97:481–490

    Article  PubMed  Google Scholar 

  • Böhling T, Hatva E, Kujala K, Claesson-Welsh L, Alitalo K, Haltia M (1996a) Expression of growth factors and growth factor receptors in capillary hemangioblastoma. J Neuropathol Exp Neurol 55:522–527

    Article  PubMed  Google Scholar 

  • Böhling T, Mäenpää A, Timonen T, Vantunen L, Paetau A, Haltia M (1996b) Different expression of adhesion molecules on stromal cells and endothelial cells of capillary hemangioblastoma. Acta Neuropathol 92:461–466

    Article  PubMed  Google Scholar 

  • Böhling T et al (1996c) Ezrin expression in stromal cells of capillary hemangioblastoma. Immunohistochemical Surv Brain Tumors Am J Pathol 148:367–373

    Google Scholar 

  • Brastianos PK et al (2013) Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 45:285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges K, Jaboin J, Kubicky C, Than K (2017) Stereotactic radiosurgery versus surgical resection for spinal hemangioblastoma: a systematic review. Clin Neurol Neurosurg 154:59–66

    Article  PubMed  Google Scholar 

  • Brotchi J, Fischer G (1998) Spinal cord Ependymomas. Neurosurg Focus 4:e2–e2

    Article  CAS  PubMed  Google Scholar 

  • Brotchi J, Bruneau M, Lefranc F, Balériaux D (2006) Surgery of intraspinal cord tumors. Clin Neurosurg 53:209–216

    PubMed  Google Scholar 

  • Budka H (1974) Intracranial lipomatous hamartomas (intracranial “lipomas”). A study of 13 cases including combinations with medulloblastoma, colloid and epidermoid cysts, angiomatosis and other malformations. Acta Neuropathol 28:205–222

    Article  CAS  PubMed  Google Scholar 

  • Bydon M, Gokaslan Z (2015) Spinal meningioma resection. World Neurosurg 83:1032–1033

    Article  PubMed  Google Scholar 

  • Capper D et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254

    Article  CAS  PubMed  Google Scholar 

  • Carey S et al (2019) Evaluating pediatric spinal low-grade gliomas: a 30-year retrospective analysis. J Neurooncol 145:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carman K, Yakut A, Anlar B, Ayter S (2013) Spinal neurofibromatosis associated with classical neurofibromatosis type 1: genetic characterisation of an atypical case. BMJ Case Rep 2013

    Google Scholar 

  • Casadei GP, Scheithauer BW, Hirose T, Manfrini M, van Houton C, Wood MB (1995) Cellular schwannoma. A clinicopathologic, DNA flow cytometric, and proliferation marker study of 70 patients. Cancer 75:1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain M (2002a) Etoposide for recurrent spinal cord ependymoma. Neurology 58:1310–1311

    Article  PubMed  Google Scholar 

  • Chamberlain M (2002b) Salvage chemotherapy for recurrent spinal cord ependymona. Cancer 95:997–1002

    Article  PubMed  Google Scholar 

  • Chang U, Choe W, Chung S, Chung C, Kim H (2002) Surgical outcome and prognostic factors of spinal intramedullary ependymomas in adults. J Neurooncol 57:133–139

    Article  PubMed  Google Scholar 

  • Chappé C et al (2013) Dysembryoplastic neuroepithelial tumors share with pleomorphic xanthoastrocytomas and gangliogliomas BRAFV600E mutation and expression. Brain Pathol 23:574–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheang C-M, Hwang S-L, Hwong S-L (1997) An analysis of intraspinal tumors in South Taiwan the Kaohsiung. J Med Sci 13:229–236

    CAS  Google Scholar 

  • Cheng M (1982) Spinal cord tumors in the People’s Republic of China: a statistical review. Neurosurgery 10:22–24

    Article  CAS  PubMed  Google Scholar 

  • Chu B, Terae S, Hida K, Furukawa M, Abe S, Miyasaka K (2001) MR findings in spinal hemangioblastoma: correlation with symptoms and with angiographic and surgical findings. AJNR Am J Neuroradiol 22:206–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark V et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO Science (New York, NY) 339:1077–1080

    Google Scholar 

  • Colin C et al (2013) Outcome analysis of childhood pilocytic astrocytomas: a retrospective study of 148 cases at a single institution. Neuropathol Appl Neurobiol 39:693–705

    Article  CAS  PubMed  Google Scholar 

  • Colnat-Coulbois S, Kremer S, Weinbreck N, Pinelli C, Auque J (2008) Lipomatous meningioma: report of 2 cases and review of the literature. Surg Neurol 69:398–402; discussion 402

    Google Scholar 

  • Constantini S, Miller D, Allen J, Rorke L, Freed D, Epstein F (2000) Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg 93:183–193

    CAS  PubMed  Google Scholar 

  • Constantini S et al (1996) Intramedullary spinal cord tumors in children under the age of 3 years. J Neurosurg 85:1036–1043

    Article  CAS  PubMed  Google Scholar 

  • Deora H, Sumitra S, Nandeesh B, Bhaskara MR, Arivazhagan A (2019) Spinal intramedullary ganglioglioma in children: an unusual location of a common pediatric tumor. Pediatr Neurosurg 54:245–252

    Article  PubMed  Google Scholar 

  • DePowell J, Stevenson C, Mangano F (2010) Tethered cord syndrome: a review of the literature from embryology to adult presentation. Neurosurg Focus 29:E1–E1

    Article  PubMed  Google Scholar 

  • Dewan R et al (2015) Evidence of polyclonality in neurofibromatosis type 2–associated multilobulated vestibular schwannomas. Neuro Oncol 17:566–573

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Aguilar D et al (2019) Prognostic factors and survival in low grade gliomas of the spinal cord: a population-based analysis from 2006 to 2012. J Clin Neurosci 61:14–21

    Article  PubMed  Google Scholar 

  • Dinda A, Sarkar C, Roy S (1990) Rosenthal fibres: an immunohistochemical, ultrastructural and immunoelectron microscopic study. Acta Neuropathol 79:456–460

    Article  CAS  PubMed  Google Scholar 

  • Dougherty MJ et al (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12:621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duong LM, McCarthy BJ, McLendon RE, Dolecek TA, Kruchko C, Douglas LL, Ajani UA (2012) Descriptive epidemiology of malignant and nonmalignant primary spinal cord, spinal meninges, and cauda equina tumors, United States, 2004–2007. Cancer 118:4220–4227

    Article  PubMed  Google Scholar 

  • Ebert C, Von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, von Deimling A (1999) Molecular genetic analysis of ependymal tumors: NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155:627–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia-Pasquet S et al (2004) Incidence of central nervous system tumors in Gironde. France Neuroepidemiol 23:110–117

    Article  Google Scholar 

  • Favier J, Gimenez-Roqueplo AP (2010) Pheochromocytomas: the (pseudo)-hypoxia hypothesis. Best Pract Res Clin Endocrinol Metab 24:957–968

    Article  CAS  PubMed  Google Scholar 

  • Fernandes R, Lynch J, Welling L, Gonçalves M, Tragante R, Temponi V, Pereira C (2014) Complete removal of the spinal nerve sheath tumors. Surgical technics and results from a series of 30 patients. Arq Neuropsiquiatr 72:312–317

    Article  PubMed  Google Scholar 

  • Fine SW, McClain SA, Li M (2004) Immunohistochemical staining for calretinin is useful for differentiating schwannomas from neurofibromas. Am J Clin Pathol 122:552–559

    Article  PubMed  Google Scholar 

  • Finn M, Walker M (2007) Spinal lipomas: clinical spectrum, embryology, and treatment. Neurosurg Focus 23:E10–E10

    Article  PubMed  Google Scholar 

  • Flamme I, Krieg M, Plate KH (1998) Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2α. Am J Pathol 153:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forshew T et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218:172–181

    Article  CAS  PubMed  Google Scholar 

  • Frankel H et al (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I Paraplegia 7:179–192

    CAS  PubMed  Google Scholar 

  • Garcés-Ambrossi G et al (2009) Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases. J Neurosurg Spine 11:591–599

    Article  PubMed  Google Scholar 

  • Giannini C et al (1999) Cellular proliferation in pilocytic and diffuse astrocytomas. J Neuropathol Exp Neurol 58:46–53

    Article  CAS  PubMed  Google Scholar 

  • Gläsker S, Bender B, Apel TV, van Velthoven V, Mulligan L, Zentner J, Neumann H (2001) Reconsideration of biallelic inactivation of theVHL tumour suppressor gene in hemangioblastomas of the central nervous system. J Neurol Neurosurg Psychiatry 70:644–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton RL, Pollack IF (1997) The molecular biology of ependymomas. Brain Pathol 7:807–822

    Article  CAS  PubMed  Google Scholar 

  • Hasselblatt M, Nolte K, Paulus W (2004) Angiomatous meningioma: a clinicopathologic study of 38 cases. Am J Surg Pathol 28:390–393

    Article  PubMed  Google Scholar 

  • Helseth A, Mørk S, Johansen A, Tretli S (1989) Neoplasms of the central nervous system in Norway. IV. A population-based epidemiological study of meningiomas APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 97:646–654

    Google Scholar 

  • Hirano K et al (2012) Primary spinal cord tumors: review of 678 surgically treated patients in Japan. A multicenter study. Eur Spine J 21:2019–2026

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Scheithauer BW, Lopes MBS, Gerber HA, Altermatt HJ, VandenBerg SR (1997) Ganglioglioma: an ultrastructural and immunohistochemical study. Cancer 79:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Tani T, Shimada T, Ishizawa K, Shimada S, Sano T (2003) Immunohistochemical demonstration of EMA/Glut1-positive perineurial cells and CD34-positive fibroblastic cells in peripheral nerve sheath tumors. Mod Pathol 16:293–298

    Article  PubMed  Google Scholar 

  • Hitotsumatsu T et al (1997) Expression of neurofibromatosis 2 protein in human brain tumors: an immunohistochemical study. Acta Neuropathol 93:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hoischen A et al (2008) Comprehensive characterization of genomic aberrations in gangliogliomas by CGH, array-based CGH and interphase FISH. Brain Pathol 18:326–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horbinski C (2013) To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 72:2–7

    Article  PubMed  Google Scholar 

  • Huang W-q et al (1982) Statistical analysis of central nervous system tumors in China. J Neurosurg 56:555–564

    Article  Google Scholar 

  • Hussein M (2007) Central nervous system capillary haemangioblastoma: the pathologist’s viewpoint. Int J Exp Pathol 88:311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hütt-Cabezas M et al (2013) Activation of mTORC1/mTORC2 signaling in pediatric low-grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro Oncol 15:1604–1614

    Article  PubMed  PubMed Central  Google Scholar 

  • Huynh DP, Mautner V, Baser ME, Stavrou D, Pulst S-M (1997) Immunohistochemical detection of schwannomin and neurofibromin in vestibular schwannomas, ependymomas and meningiomas. J Neuropathol Exp Neurol 56:382–390

    Article  CAS  PubMed  Google Scholar 

  • Imagama S et al (2011) Differentiation of localization of spinal hemangioblastomas based on imaging and pathological findings. Eur Spine J 20:1377–1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Isaacson S (2000) Radiation therapy and the management of intramedullary spinal cord tumors. J Neurooncol 47:231–238

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa K, Komori T, Hirose T (2005) Stromal cells in hemangioblastoma: neuroectodermal differentiation and morphological similarities to ependymoma. Pathol Int 55:377–385

    Article  PubMed  Google Scholar 

  • Ishizawa K, Komori T, Shimada S, Hirose T (2008) Olig2 and CD99 are useful negative markers for the diagnosis of brain tumors. Clin Neuropathol 27:118–128

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki M, Hida K, Aoyama T, Houkin K (2013) Thoracolumbar intramedullary subependymoma with multiple cystic formation: a case report and review. Eur Spine J 22:S317-320

    Article  PubMed  Google Scholar 

  • Jacoby LB, MacCollin M, Barone R, Ramesh V, Gusella JF (1996) Frequency and distribution of NF2 mutations in schwannomas. Genes Chromosomes Cancer 17:45–55

    Article  CAS  PubMed  Google Scholar 

  • Jacoby LB et al (1994) Exon scanning for mutation of the NF2 gene in schwannomas. Hum Mol Genet 3:413–419

    Article  CAS  PubMed  Google Scholar 

  • Jallo G, Freed D, Epstein F (2003) Intramedullary spinal cord tumors in children. Childs Nerv Syst 19:641–649

    Article  PubMed  Google Scholar 

  • Jones DT, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K, Collins VP (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT et al. (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma Nat Genet 45:927–932

    Google Scholar 

  • Kalash R et al (2018) Stereotactic body radiation therapy for benign spine tumors: is dose de-escalation appropriate? J Neurosurg Spine 29:220–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Karamchandani JR, Nielsen TO, van de Rijn M, West RB (2012) Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol 20:445–450

    Article  CAS  PubMed  Google Scholar 

  • Katsetos C, Krishna L, Friedberg E, Reidy J, Karkavelas G, Savory J (1994) Lobar pilocytic astrocytomas of the cerebral hemispheres: II. Pathobiology–morphogenesis of the eosinophilic granular bodies. Clin Neuropathol 13:306–314

    CAS  PubMed  Google Scholar 

  • Kawano N, Yasui Y, Utsuki S, Oka H, Fuji K, Yamashina S (2004) Light microscopic demonstration of the microlumen of ependymoma: a study of the usefulness of antigen retrieval for epithelial membrane antigen (EMA) immunostaining. Brain Tumor Pathol 21:17–21

    Article  PubMed  Google Scholar 

  • Kaye A, Giles G, Gonzales M (1993) Primary central nervous system tumours in Australia: a profile of clinical practice from the Australian brain tumour register. Aust New Zealand J Surg 63:33–38

    Article  CAS  Google Scholar 

  • Kilday J-P, Rahman R, Dyer S, Ridley L, Lowe J, Coyle B, Grundy R (2009) Pediatric ependymoma: biological perspectives. Mol Cancer Res 7:765–786

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Budka H, Soler-Federsppiel S (1986) An immunocytochemical comparison of the glia-associated proteins glial fibrillary acidic protein (GFAP) and S-100 protein (S100P) in human brain tumors. Clin Neuropathol 5:21–27

    CAS  PubMed  Google Scholar 

  • Klekamp J, Samii M (1993) Introduction of a score system for the clinical evaluation of patients with spinal processes. Acta Neurochir (wien) 123:221–223

    CAS  PubMed  Google Scholar 

  • Klekamp J, Samii M (1999) Surgical results for spinal meningiomas. Surg Neurol 52:552–562

    Article  CAS  PubMed  Google Scholar 

  • Klekamp J (2015) Spinal ependymomas. Part 1: intramedullary ependymomas. Neurosurg Focus 39:E6–E6

    Article  PubMed  Google Scholar 

  • Koeller K, Shih R (2019) Intradural extramedullary spinal neoplasms: radiologic-pathologic correlation. Radiographics 39:468–490

    Article  PubMed  Google Scholar 

  • Koeller K, Rosenblum R, Morrison A (2000) Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics 20:1721–1749

    Article  CAS  PubMed  Google Scholar 

  • Koga T, Iwasaki H, Ishiguro M, Matsuzaki A, Kikuchi M (2002) Losses in chromosomes 17, 19, and 22q in neurofibromatosis type 1 and sporadic neurofibromas: a comparative genomic hybridization analysis. Cancer Genet Cytogenet 136:113–120

    Article  CAS  PubMed  Google Scholar 

  • Korshunov A et al (2010) Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28:3182–3190

    Article  PubMed  Google Scholar 

  • Kutluk T et al (2015) Pediatric intramedullary spinal cord tumors: a single center experience. Eur J Paediatr Neurol 19:41–47

    Article  PubMed  Google Scholar 

  • Lal A, Dahiya S, Gonzales M, Hiniker A, Prayson R, Kleinschmidt-DeMasters BK, Perry A (2014) IgG 4 overexpression is rare in meningiomas with a prominent inflammatory component: a review of 16 cases. Brain Pathol 24:352–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalitha V, Dastur D (1980) Neoplasms of the central nervous system–histological types in 2237 cases. Indian J Cancer 17:102–106

    CAS  PubMed  Google Scholar 

  • Le LQ, Shipman T, Burns DK, Parada LF (2009) Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell Stem Cell 4:453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-Y et al (1998) Loss of heterozygosity and somatic mutations of the VHL tumor suppressor gene in sporadic cerebellar hemangioblastomas. Cancer Res 58:504–508

    CAS  PubMed  Google Scholar 

  • Lekanne RD et al (1994) Frequent NF2 gene transcript mutations in sporadic meningiomas and vestibular schwannomas. Am J Hum Genet 54:1022–1029

    Google Scholar 

  • Leone P et al (1998) Allelic status of 1p, 14q, and 22q and NF2 gene mutations in sporadic schwannomas. Int J Mol Med 1:889–892

    CAS  PubMed  Google Scholar 

  • Li X, Wang J, Niu J, Hong J, Feng Y (2016) Diagnosis and microsurgical treatment of spinal hemangioblastoma. Neurol Sci 37:899–906

    Article  PubMed  Google Scholar 

  • Liang X, Shen D, Huang Y, Yin C, Bojanowski CM, Zhuang Z, Chan C-C (2007) Molecular pathology and CXCR4 expression in surgically excised retinal hemangioblastomas associated with von Hippel-Lindau disease. Ophthalmology 114:147–156

    Article  PubMed  Google Scholar 

  • Liebenow B, Tatter A, Dezarn W, Isom S, Chan M, Tatter S (2019) Gamma Knife stereotactic radiosurgery favorably changes the clinical course of hemangioblastoma growth in von Hippel-Lindau and sporadic patients. J Neurooncol 142:471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Jain A, Sankey E, Jallo G, Bettegowda C (2016) Sporadic intramedullary hemangioblastoma of the spine: a single institutional review of 21 cases. Neurol Res 38:205–209

    Article  CAS  PubMed  Google Scholar 

  • Longatti P, Basaldella L, Orvieto E, Dei Tos AP, Martinuzzi A (2006) Aquaporin 1 expression in cystic hemangioblastomas. Neurosci Lett 392:178–180

    Article  CAS  PubMed  Google Scholar 

  • Louis D, Hamilton A, Sobel R, Ojemann R (1991) Pseudopsammomatous meningioma with elevated serum carcinoembryonic antigen: a true secretory meningioma. Case Report J Neurosurg 74:129–132

    CAS  PubMed  Google Scholar 

  • Louis DN, Ramesh V, Gusella JF (1995) Neuropathology and molecular genetics of neurofibromatosis 2 and related tumors. Brain Pathol 5:163–172

    Article  CAS  PubMed  Google Scholar 

  • Louis D, Ohgaki H, Wiestler O, Cavenee W (2016) WHO Classification of Tumours of the Central Nervous System vol 1. Revised 4th edition edn. International Agency for Research on Cancer (IARC), Lyon, France

    Google Scholar 

  • Lubner M, Perrin R, Lämmle M, Perry A (2007) Neuropathology for the neuroradiologist: Antoni A and Antoni B tissue patterns. AJNR Am J Neuroradiol 28:1633–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Luksik A, Garzon-Muvdi T, Yang W, Huang J, Jallo G (2017) Pediatric spinal cord astrocytomas: a retrospective study of 348 patients from the SEER database. J Neurosurg Pediatr 19:711–719

    Article  PubMed  Google Scholar 

  • Luyken C, Blümcke I, Fimmers R, Urbach H, Wiestler OD, Schramm J (2004) Supratentorial gangliogliomas: histopathologic grading and tumor recurrence in 184 patients with a median follow-up of 8 years. Cancer Interdisc Int J Am Cancer Soc 101:146–155

    Google Scholar 

  • Maertens O et al (2006) Comprehensive NF1 screening on cultured Schwann cells from neurofibromas. Hum Mutat 27:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Maiti T, Bir S, Patra D, Kalakoti P, Guthikonda B, Nanda A (2016) Spinal meningiomas: clinicoradiological factors predicting recurrence and functional outcome. Neurosurg Focus 41:E6–E6

    Article  PubMed  Google Scholar 

  • Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391

    Article  CAS  PubMed  Google Scholar 

  • McCormick P, Torres R, Post K, Stein B (1990) Intramedullary ependymoma of the spinal cord. J Neurosurg 72:523–532

    Article  CAS  PubMed  Google Scholar 

  • McGirt M, Chaichana K, Atiba A, Attenello F, Woodworth G, Jallo G (2008a) Neurological outcome after resection of intramedullary spinal cord tumors in children. Childs Nerv Syst 24:93–97

    Article  PubMed  Google Scholar 

  • McGirt M, Chaichana K, Atiba A, Bydon A, Witham T, Yao K, Jallo G (2008b) Incidence of spinal deformity after resection of intramedullary spinal cord tumors in children who underwent laminectomy compared with laminoplasty. J Neurosurg Pediatr 1:57–62

    Article  PubMed  Google Scholar 

  • McGirt M et al (2010) Short-term progressive spinal deformity following laminoplasty versus laminectomy for resection of intradural spinal tumors: analysis of 238 patients. Neurosurgery 66:1005–1012

    Article  PubMed  Google Scholar 

  • Meher S, Tripathy L, Jain H, Basu S (2017) Nondysraphic cervicomedullary intramedullary lipoma. J Craniovertebral Junction Spine 8:271–274

    Article  Google Scholar 

  • Mehta G, Asthagiri A, Bakhtian K, Auh S, Oldfield E, Lonser R (2010) Functional outcome after resection of spinal cord hemangioblastomas associated with von Hippel-Lindau disease. J Neurosurg Spine 12:233–242

    Article  PubMed  Google Scholar 

  • Memoli VA, Brown EF, Gould VE (1984) Glial FibriUary acidic protein (GFAP) immunoreactivity in peripheral nerve sheath tumors. Ultrastruct Pathol 7:269–275

    Article  CAS  PubMed  Google Scholar 

  • Merhemic Z, Stosic-Opincal T, Thurnher M (2016) Neuroimaging of spinal tumors. Magn Reson Imaging Clin N Am 24:563–579

    Article  PubMed  Google Scholar 

  • Milano M, Johnson M, Sul J, Mohile N, Korones D, Okunieff P, Walter K (2010) Primary spinal cord glioma: a surveillance, epidemiology, and end results database study. J Neurooncol 98:83–92

    Article  PubMed  Google Scholar 

  • Minehan KJ, Shaw EG, Scheithauer BW, Davis DL, Onofrio BM (1995) Spinal cord astrocytoma: pathological and treatment considerations. J Neurosurg 83:590–595

    Article  CAS  PubMed  Google Scholar 

  • Monajati A, Spitzer RM, Wiley J, Heggeness L (1986) MR imaging of a spinal teratoma. J Comput Assist Tomogr 10:307–310

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Shin B, Kim J, Kwon T, Chung H, Park Y (2010) Adult cervical intramedullary teratoma: first reported immature case. J Neurosurg Spine 13:283–287

    Article  PubMed  Google Scholar 

  • Murakami T et al (2013) Intramedullary spinal cord ganglioglioma presenting as hyperhidrosis: unique symptoms and magnetic resonance imaging findings: case report. J Neurosurg Spine 18:184–188

    Article  PubMed  Google Scholar 

  • Nonomura Y, Miyamoto K, Wada E, Hosoe H, Nishimoto H, Ogura H, Shimizu K (2002) Intramedullary teratoma of the spine: report of two adult cases. Spinal Cord 40:40–43

    Article  CAS  PubMed  Google Scholar 

  • Osawa T, Tosaka M, Nagaishi M, Yoshimoto Y (2013) Factors affecting peritumoral brain edema in meningioma: special histological subtypes with prominently extensive edema. J Neurooncol 111:49–57

    Article  PubMed  Google Scholar 

  • Otero JJ, Rowitch D, Vandenberg S (2011) OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms. J Neurooncol 104:423–438

    Article  PubMed  Google Scholar 

  • Paek S et al. (2005) Microcystic meningiomas: radiological characteristics of 16 cases. Acta Neurochir (Wien) 147:965–972; discussion 972

    Google Scholar 

  • Pajtler KW et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang D, Zovickian J, Wong S, Hou Y, Moes G (2013) Surgical treatment of complex spinal cord lipomas. Childs Nerv Syst 29:1485–1513

    Article  PubMed  Google Scholar 

  • Park H, Chang J (2013) Review of stereotactic radiosurgery for intramedullary spinal lesions. Korean J Spine 10:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker A, Robinson R, Bullock P (1996) Difficulties in diagnosing intrinsic spinal cord tumours. Arch Dis Child 75:204–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel U, Pinto R, Miller D, Handler M, Rorke L, Epstein F, Kricheff I (1998) MR of spinal cord ganglioglioma. AJNR Am J Neuroradiol 19:879–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil S et al (2008) Immunohistochemical analysis supports a role for INI1/SMARCB1 in hereditary forms of schwannomas, but not in solitary, sporadic schwannomas. Brain Pathol 18:517–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pekmezci M et al (2015) Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas. Mod Pathol 28:187–200

    Article  CAS  PubMed  Google Scholar 

  • Perry A, Roth KA, Banerjee R, Fuller CE, Gutmann DH (2001) NF1 deletions in S-100 protein-positive and negative cells of sporadic and neurofibromatosis 1 (NF1)-associated plexiform neurofibromas and malignant peripheral nerve sheath tumors. Am J Pathol 159:57–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirotte B, Krischek B, Levivier M, Bolyn S, Brucher J, Brotchi J (1998) Diagnostic and microsurgical presentation of intracranial angiolipomas. Case Rep Rev Lit J Neurosurg 88:129–132

    CAS  Google Scholar 

  • Prayson RA, Khajavi K, Comair YG (1995) Cortical architectural abnormalities and MIB1 immunoreactivity in gangliogliomas: a study of 60 patients with intracranial tumors. J Neuropathol Exp Neurol 54:513–520

    Article  CAS  PubMed  Google Scholar 

  • Preusser M, Laggner U, Haberler C, Heinzl H, Budka H, Hainfellner J (2006) Comparative analysis of NeuN immunoreactivity in primary brain tumours: conclusions for rational use in diagnostic histopathology. Histopathology 48:438–444

    Article  CAS  PubMed  Google Scholar 

  • Preusser M, Budka H, Rössler K, Hainfellner J (2007) OLIG2 is a useful immunohistochemical marker in differential diagnosis of clear cell primary CNS neoplasms. Histopathology 50:365–370

    Article  CAS  PubMed  Google Scholar 

  • Proescholdt MA et al (2005) Expression of hypoxia-inducible carbonic anhydrases in brain tumors. Neuro Oncol 7:465–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pummi KP, Aho HJ, Laato MK, Peltonen JT, Peltonen SA (2006) Tight junction proteins and perineurial cells in neurofibromas. J Histochem Cytochem 54:53–61

    Article  CAS  PubMed  Google Scholar 

  • Raco A, Pesce A, Toccaceli G, Domenicucci M, Miscusi M, Delfini R (2017) Factors leading to a poor functional outcome in spinal meningioma surgery: remarks on 173 cases. Neurosurgery 80:602–609

    Article  PubMed  Google Scholar 

  • Reuss DE et al (2013) Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol 125:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro S et al (2013) Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve. Cell reports 5:126–136

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez FJ et al (2007) Ependymomas with neuronal differentiation: a morphologic and immunohistochemical spectrum. Acta Neuropathol 113:313–324

    Article  PubMed  Google Scholar 

  • Roonprapunt C, Silvera V, Setton A, Freed D, Epstein F, Jallo G (2001) Surgical management of isolated hemangioblastomas of the spinal cord. Neurosurgery 49:321–327; discussion 327–328

    Google Scholar 

  • Rouleau GA et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363:515–521

    Article  CAS  PubMed  Google Scholar 

  • Roux F, Nataf F, Pinaudeau M, Borne G, Devaux B, Meder J (1996) Intraspinal meningiomas: review of 54 cases with discussion of poor prognosis factors and modern therapeutic management. Surg Neurol 46:458–463; discussion 463–454

    Google Scholar 

  • Sahm F et al (2013) AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathol 126:757–762

    Article  CAS  PubMed  Google Scholar 

  • Sainz J, Huynh DP, Figueroa K, Ragge NK, Baser ME, Pulst S-M (1994) Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum Mol Genet 3:885–891

    Article  CAS  PubMed  Google Scholar 

  • Samii M, KleKamp J (2006a) Extramedullary tumors surgery of spinal tumors, first edition, vol 4, New York, Springer, Berlin Heidelberg, pp 144–312

    Google Scholar 

  • Samii M, KleKamp J (2006b) Intratramedullary tumors surgery of spinal tumors, first edition, vol 3, New York, Springer Berlin Heidelberg, pp 20–131

    Google Scholar 

  • Sandalcioglu I, Hunold A, Müller O, Bassiouni H, Stolke D, Asgari S (2008) Spinal meningiomas: critical review of 131 surgically treated patients. Eur Spine J 17:1035–1041

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawin PD, Theodore N, Rekate HL (1999) Spinal cord ganglioglioma in a child with neurofibromatosis Type 2: case report and literature review. J Neurosurg Spine 90:231–233

    Article  CAS  Google Scholar 

  • Schindler G et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  PubMed  Google Scholar 

  • Schmitz U, Mueller W, Weber M, Sevenet N, Delattre O, von Deimling A (2001) INI1 mutations in meningiomas at a potential hotspot in exon 9. Br J Cancer 84:199–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer L et al (2013) Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol 125:651–658

    Article  CAS  PubMed  Google Scholar 

  • Segal D, Lidar Z, Corn A, Constantini S (2012) Delay in diagnosis of primary intradural spinal cord tumors. Surg Neurol Int 3:52–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Seizinger BR, Martuza RL, Gusella JF (1986) Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322:644–647

    Article  CAS  PubMed  Google Scholar 

  • Seo H, Kim J, Lee D, Lee Y, Suh S, Kim S, Na D (2010) Nonenhancing intramedullary astrocytomas and other MR imaging features: a retrospective study and systematic review. AJNR Am J Neuroradiol 31:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar GM et al (2014) Sporadic hemangioblastomas are characterized by cryptic VHL inactivation. Acta Neuropathol Commun 2:167

    Article  PubMed  Google Scholar 

  • She D-J, Lu Y-P, Xiong J, Geng D-Y, Yin B (2019) MR imaging features of spinal pilocytic astrocytoma. BMC Med Imaging 19:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Shuangshoti S, Panyathanya R (1974) Neural neoplasms in Thailand: a study of 2897 cases. Neurology 24:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Smith MJ (2015) Germline and somatic mutations in meningiomas. Cancer Genet 208:107–114

    Article  CAS  PubMed  Google Scholar 

  • Sobel RA, Wang Y (1993) Vestibular (acoustic) schwannomas: histologic features in neurofibromatosis 2 and in unilateral cases. J Neuropathol Exp Neurol 52:106–113

    Article  CAS  PubMed  Google Scholar 

  • Solero C, Fornari M, Giombini S, Lasio G, Oliveri G, Cimino C, Pluchino F (1989) Spinal meningiomas: review of 174 operated cases. Neurosurgery 25:153–160

    Article  CAS  PubMed  Google Scholar 

  • Squire JA et al (2001) Molecular cytogenetic analysis of glial tumors using spectral karyotyping and comparative genomic hybridization. Mol Diagn 6:93–108

    Article  CAS  PubMed  Google Scholar 

  • Storlazzi CT, Von Steyern FV, Domanski HA, Mandahl N, Mertens F (2005) Biallelic somatic inactivation of the NF1 gene through chromosomal translocations in a sporadic neurofibroma. Int J Cancer 117:1055–1057

    Article  CAS  PubMed  Google Scholar 

  • Suh Y-L et al (2002) Tumors of the central nervous system in Korea a multicenter study of 3221 cases. J Neurooncol 56:251–259

    Article  PubMed  Google Scholar 

  • Sun B, Wang C, Wang J, Liu A (2003) MRI features of intramedullary spinal cord ependymomas. J Neuroimaging 13:346–351

    Article  PubMed  Google Scholar 

  • Svoboda N, Bradac O, Benes V (2018) Intramedullary ependymoma: long-term outcome after surgery. Acta Neurochir (wien) 160:439–447

    Article  CAS  PubMed  Google Scholar 

  • Tarapore P et al (2013) Pathology of spinal ependymomas: an institutional experience over 25 years in 134 patients. Neurosurgery 73:247–255; discussion 255

    Google Scholar 

  • Thomas L et al (2012) Exploring the somatic NF1 mutational spectrum associated with NF1 cutaneous neurofibromas. Eur J Hum Genet 20:411–419

    Article  CAS  PubMed  Google Scholar 

  • Tirakotai W, Mennel H, Celik I, Hellwig D, Bertalanffy H, Riegel T (2006) Secretory meningioma: immunohistochemical findings and evaluation of mast cell infiltration. Neurosurg Rev 29:41–48

    Article  PubMed  Google Scholar 

  • Trofatter JA et al (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800

    Article  CAS  PubMed  Google Scholar 

  • Turan N, Halani S, Baum G, Neill S, Hadjipanayis C (2016) Adult intramedullary teratoma of the spinal cord: a case report and review of literature. World Neurosurg 87(661):e623-630

    Google Scholar 

  • Vege KDS, Giannini C, Scheithauer BW (2000) The immunophenotype of ependymomas. Appl Immunohistochem Mol Morphol 8:25–31

    Article  CAS  PubMed  Google Scholar 

  • Wacker MR, Cogen PH, Etzell JE, Daneshvar L, Davis RL, Prados MD (1992) Diffuse leptomeningeal involvement by a ganglioglioma in a child: case report. J Neurosurg 77:302–306

    Article  CAS  PubMed  Google Scholar 

  • Wanebo JE, Lonser RR, Glenn GM, Oldfield EH (2003) The natural history of hemangioblastomas of the central nervous system in patients with von Hippel—Lindau disease. J Neurosurg 98:82–94

    Article  PubMed  Google Scholar 

  • Warder D, Oakes W (1994) Tethered cord syndrome: the low-lying and normally positioned conus. Neurosurgery 34:597–600; discussion 600

    Google Scholar 

  • Warren C, James L, Ramsden R, Wallace A, Baser M, Varley J, Evans D (2003) Identification of recurrent regions of chromosome loss and gain in vestibular schwannomas using comparative genomic hybridisation. J Med Genet 40:802–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss S, Langloss J, Enzinger F (1983) Value of S-100 protein in the diagnosis of soft tissue tumors with particular reference to benign and malignant Schwann cell tumors. Lab Invest 49:299–308

    CAS  PubMed  Google Scholar 

  • Wellenreuther R et al (1995) Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 146:827–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westwick H, Giguère J, Shamji M (2016) Incidence and prognosis of spinal hemangioblastoma: a surveillance epidemiology and end results study. Neuroepidemiology 46:14–23

    Article  PubMed  Google Scholar 

  • Wizigmann-Voos S, Plate K (1996) Pathology, genetics and cell biology of hemangioblastomas. Histol Histopathol 11:1049–1061

    CAS  PubMed  Google Scholar 

  • Wolf HK, Müller MB, Spänle M, Zenther J, Schramm J, Wiestler OD (1994) Ganglioglioma: a detailed histopathological and immunohistochemical analysis of 61 cases. Acta Neuropathol 88:166–173

    Article  CAS  PubMed  Google Scholar 

  • Wostrack M et al (2018) Spinal ependymoma in adults: a multicenter investigation of surgical outcome and progression-free survival. J Neurosurg Spine 28:654–662

    Article  PubMed  Google Scholar 

  • Yang R et al (2018) Pediatric low-grade gliomas can be molecularly stratified for risk. Acta Neuropathol 136:641–655

    Article  CAS  PubMed  Google Scholar 

  • Yin XL, Hui ABY, Pang JCS, Poon WS, Ng HK (2002) Genome-wide survey for chromosomal imbalances in ganglioglioma using comparative genomic hybridization. Cancer Genet Cytogenet 134:71–76

    Article  CAS  PubMed  Google Scholar 

  • Yuh W, Chung C, Park S, Kim K, Lee S, Kim K (2018) Spinal cord subependymoma surgery: a multi-institutional experience. J Korean Neurosurg Soc 61:233–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL (2000) Expression of hypoxia-inducible factor 1α in brain tumors: association with angiogenesis, invasion, and progression. Cancer: Interdisc Int J Am Cancer Soc 88:2606–2618

    Article  CAS  Google Scholar 

  • Zagzag D et al (2005) Stromal cell–derived factor-1α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65:6178–6188

    Article  CAS  PubMed  Google Scholar 

  • Zang K (2001) Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet Genome Res 93:207–220

    Article  CAS  Google Scholar 

  • Zhang J et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H et al (2013) Lymphoplasmacyte-rich meningioma: our experience with 19 cases and a systematic literature review. Int J Clin Exp Med 6:504–515

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George I. Jallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noureldine, M.H.A., Shimony, N., Jallo, G.I. (2023). Benign Spinal Tumors. In: Rezaei, N., Hanaei, S. (eds) Human Brain and Spinal Cord Tumors: From Bench to Bedside. Volume 2. Advances in Experimental Medicine and Biology, vol 1405. Springer, Cham. https://doi.org/10.1007/978-3-031-23705-8_23

Download citation

Publish with us

Policies and ethics