Skip to main content

Smart Windows

  • Chapter
  • First Online:
Transparent Wood Materials

Abstract

Wood is an available and sustainable substrate which has the potential for large-scale nanotechnology functionalization. Most materials used in optical lighting applications must create a homogeneous illumination and have high mechanical and hydrophobic requirements. But they are rarely environmentally beneficial. The large heat loss/gain through windows contributes to high energy consumption in buildings. Furthermore, the traditional glass fabrication method causes numerous environmental issues. Transparent wood-based composites are gaining importance in smart window applications. To save energy, a novel material called optically transparent wood is being developed for light-transmitting structures in buildings. This material combines optical and mechanical performance. Buildings that are eco-friendly and energy efficient are desirable from a sustainability standpoint, especially considering the current global energy and environmental crisis. Therefore, this chapter highlights the recent progress and applications of transparent wood in the field of smart windows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Vermeer, S. Rahmstorf, Global sea level linked to global temperature. Proc. Natl. Acad. Sci. 106(51), 21527–21532 (2009). https://doi.org/10.1073/pnas.0907765106

    Article  Google Scholar 

  2. J.E. Hansen, R. Ruedy, M. Sato, K. Lo, Global surface temperature change. Rev. Geophys. 48(4) (2010). https://doi.org/10.1029/2010RG000345

  3. K.H. Jung, S.J. Yun, T. Slusar, H.-T. Kim, T.M. Roh, Highly transparent ultrathin vanadium dioxide films with temperature-dependent infrared reflectance for smart windows. Appl. Surf. Sci. 589, 152962 (2022). https://doi.org/10.1016/j.apsusc.2022.152962

    Article  CAS  Google Scholar 

  4. A. Mesloub, G. Aritra, M. Touahmia, G.A. Albaqawy, B.M. Alsolami, A. Ahriz, Assessment of the overall energy performance of an SPD smart window in a hot desert climate. Energy v. 252, 124073−2022 v.252 (2022). https://doi.org/10.1016/j.energy.2022.124073

  5. A. Ghosh, B. Norton, T.K. Mallick, Influence of atmospheric clearness on PDLC switchable glazing transmission. Energy Build. 172, 257–264 (2018). https://doi.org/10.1016/j.enbuild.2018.05.008

    Article  Google Scholar 

  6. A. Ghosh, B. Norton, Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply. Renew. Energy 131, 993–1001 (2019). https://doi.org/10.1016/j.renene.2018.07.115

    Article  Google Scholar 

  7. E. Vasileva, Y. Li, I. Sytjugov, L. Berglund, S. Popov, Transparent wood as a novel material for non-cavity laser. in Asia Communications and Photonics Conference 2016 (2016), pp. ATh3F.4. https://doi.org/10.1364/ACPC.2016.ATh3F.4

  8. C. Jia et al., Clear wood toward high-performance building materials. ACS Nano 13(9), 9993–10001 (2019). https://doi.org/10.1021/acsnano.9b00089

    Article  CAS  Google Scholar 

  9. W.C.H. Choy, W.K. Chan, Y. Yuan, Recent advances in transition metal complexes and light-management engineering in organic optoelectronic devices. Adv. Mater. 26(31), 5368–5399 (2014). https://doi.org/10.1002/adma.201306133

    Article  CAS  Google Scholar 

  10. Y. Li, Q. Fu, S. Yu, M. Yan, L. Berglund, Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromol 17(4), 1358–1364 (2016). https://doi.org/10.1021/acs.biomac.6b00145

    Article  CAS  Google Scholar 

  11. M. Zhu et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427

    Article  CAS  Google Scholar 

  12. S. Fink, Transparent wood—a new approach in the functional study of wood structure. Holzforschung—Int. J. Biol. Chem. Phys. Technol. Wood 46(403) (1992). https://doi.org/10.1515/hfsg.1992.46.5.403

  13. Y. Li, Q. Fu, R. Rojas, M. Yan, M. Lawoko, L. Berglund, Lignin-retaining transparent wood. Chemsuschem 10(17), 3445–3451 (2017). https://doi.org/10.1002/cssc.201701089

    Article  CAS  Google Scholar 

  14. Y. Wu, Y. Wang, F. Yang, J. Wang, X. Wang, Study on the properties of transparent bamboo prepared by epoxy resin impregnation. Polymers (Basel) 12(4) (2020). https://doi.org/10.3390/polym12040863

  15. Z. Zhao, D. Wu, C. Huang, M. Zhang, K. Umemura, Q. Yong, Utilization of enzymatic hydrolysate from corn stover as a precursor to synthesize an eco-friendly adhesive for plywood II: investigation of appropriate manufacturing conditions, curing behavior, and adhesion mechanism. J. Wood Sci. 66(1), 85 (2020). https://doi.org/10.1186/s10086-020-01933-9

    Article  CAS  Google Scholar 

  16. Z. Bi, T. Li, H. Su, Y. Ni, L. Yan, Transparent wood film incorporating carbon dots as encapsulating material for white light-emitting diodes. ACS Sustain. Chem. Eng. 6(7), 9314–9323 (2018). https://doi.org/10.1021/acssuschemeng.8b01618

    Article  CAS  Google Scholar 

  17. Y. Okahisa, A. Yoshida, S. Miyaguchi, H. Yano, Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos. Sci. Technol. 69(11), 1958–1961 (2009). https://doi.org/10.1016/j.compscitech.2009.04.017

    Article  CAS  Google Scholar 

  18. Y. Li, M. Cheng, E. Jungstedt, B. Xu, L. Sun, L. Berglund, Optically transparent wood substrate for perovskite solar cells. ACS Sustain. Chem. Eng. 7(6), 6061–6067 (2019). https://doi.org/10.1021/acssuschemeng.8b06248

    Article  CAS  Google Scholar 

  19. M. Zhu et al., Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26, 332–339 (2016). https://doi.org/10.1016/j.nanoen.2016.05.020

    Article  CAS  Google Scholar 

  20. W. Gan, S. Xiao, L. Gao, R. Gao, J. Li, X. Zhan, Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ Nanoparticle Impregnation. ACS Sustain. Chem. Eng. 5(5), 3855–3862 (2017). https://doi.org/10.1021/acssuschemeng.6b02985

    Article  CAS  Google Scholar 

  21. Y. Liu et al., Luminescent transparent wood based on lignin-derived carbon dots as a building material for dual-channel, real-time, and visual detection of formaldehyde gas. ACS Appl. Mater. Interfaces 12(32), 36628–36638 (2020). https://doi.org/10.1021/acsami.0c10240

    Article  CAS  Google Scholar 

  22. Z. Qiu et al., Transparent wood bearing a shielding effect to infrared heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles. Compos. Sci. Technol. 172, 43–48 (2019). https://doi.org/10.1016/j.compscitech.2019.01.005

    Article  CAS  Google Scholar 

  23. Z. Yu et al., Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A 5(13), 6019–6024 (2017). https://doi.org/10.1039/C7TA00261K

    Article  CAS  Google Scholar 

  24. L. Ding, X. Han, L. Chen, S. Jiang, Preparation and properties of hydrophobic and transparent wood. J. Bioresour. Bioprod. (2022). https://doi.org/10.1016/j.jobab.2022.02.001

    Article  Google Scholar 

  25. N.A. Muhammad, B. Armynah, D. Tahir, High transparent wood composite for effective X-ray shielding applications. Mater. Res. Bull. 154, 111930 (2022). https://doi.org/10.1016/j.materresbull.2022.111930

    Article  CAS  Google Scholar 

  26. Q. Fu, M. Yan, E. Jungstedt, X. Yang, Y. Li, L.A. Berglund, Transparent plywood as a load-bearing and luminescent biocomposite. Compos. Sci. Technol. 164, 296–303 (2018). https://doi.org/10.1016/j.compscitech.2018.06.001

    Article  CAS  Google Scholar 

  27. T. Zhang et al., Constructing a m. ACS Appl. Mater. Interfaces 11(39), 36010–36019 (2019). https://doi.org/10.1021/acsami.9b09331

    Article  CAS  Google Scholar 

  28. L. Wang, Y. Liu, X. Zhan, D. Luo, X. Sun, Photochromic transparent wood for photo-switchable smart window applications. J. Mater. Chem. C 7(28), 8649–8654 (2019). https://doi.org/10.1039/C9TC02076D

    Article  CAS  Google Scholar 

  29. H. Sun et al., Strong, robust cellulose composite film for efficient light management in energy efficient building. Chem. Eng. J. 425, 131469 (2021). https://doi.org/10.1016/j.cej.2021.131469

    Article  CAS  Google Scholar 

  30. Y. Wang, Y. Wu, J. Zhou, Q. Huang, X. Lian, J. Li, Preparation and properties of two transparent wood. J. Southwest For. Univ. 5, 151–158 (2020)

    Google Scholar 

  31. H.S. Yaddanapudi, N. Hickerson, S. Saini, A. Tiwari, Fabrication and characterization of transparent wood for next generation smart building applications. Vacuum 146, 649–654 (2017). https://doi.org/10.1016/j.vacuum.2017.01.016

    Article  CAS  Google Scholar 

  32. M. Höglund, M. Johansson, I. Sychugov, L.A. Berglund, Transparent wood biocomposites by fast UV-curing for reduced light-scattering through wood/thiol–ene interface design. ACS Appl. Mater. Interfaces 12(41), 46914–46922 (2020). https://doi.org/10.1021/acsami.0c12505

    Article  CAS  Google Scholar 

  33. R. Mi et al., Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 11(1), 3836 (2020). https://doi.org/10.1038/s41467-020-17513-w

    Article  CAS  Google Scholar 

  34. J. Tong et al., Development of transparent composites using wheat straw fibers for light-transmitting building applications. Ind. Crops Prod. 170, 113685 (2021). https://doi.org/10.1016/j.indcrop.2021.113685

    Article  CAS  Google Scholar 

  35. Q. Fu et al., Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano 14(10), 13775–13783 (2020). https://doi.org/10.1021/acsnano.0c06110

    Article  CAS  Google Scholar 

  36. M. Höglund, J. Garemark, M. Nero, T. Willhammar, S. Popov, L.A. Berglund, Facile processing of transparent wood nanocomposites with structural color from plasmonic nanoparticles. Chem. Mater. 33(10), 3736–3745 (2021). https://doi.org/10.1021/acs.chemmater.1c00806

    Article  CAS  Google Scholar 

  37. Y. Jiang et al., Highly efficient and selective modification of lignin towards optically designable and multifunctional lignocellulose nanopaper for green light-management applications. Int. J. Biol. Macromol. 206, 264–276 (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.147

    Article  CAS  Google Scholar 

  38. L. Liu et al., Switchable photochromic transparent wood as smart packaging materials. Ind. Crops Prod. 184, 115050 (2022). https://doi.org/10.1016/j.indcrop.2022.115050

    Article  CAS  Google Scholar 

  39. N.-H. Xie, Y. Chen, H. Ye, C. Li, M.-Q. Zhu, Progress on photochromic diarylethenes with aggregation induced emission. Front. Optoelectron. 11(4), 317–332 (2018). https://doi.org/10.1007/s12200-018-0839-4

    Article  Google Scholar 

  40. H. Orlikowska, A. Sobolewska, S. Bartkiewicz, Light-responsive surfactants: photochromic properties of water-soluble azobenzene derivatives. J. Mol. Liq. 316, 113842 (2020). https://doi.org/10.1016/j.molliq.2020.113842

    Article  CAS  Google Scholar 

  41. M.M. Kenisarin, Thermophysical properties of some organic phase change materials for latent heat storage. a review. Sol. Energy 107, 553–575 (2014). https://doi.org/10.1016/j.solener.2014.05.001

    Article  CAS  Google Scholar 

  42. E. Oró, A. de Gracia, A. Castell, M.M. Farid, L.F. Cabeza, Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl. Energy 99, 513–533 (2012). https://doi.org/10.1016/j.apenergy.2012.03.058

    Article  CAS  Google Scholar 

  43. D.G. Prajapati, B. Kandasubramanian, Biodegradable polymeric solid framework-based organic phase-change materials for thermal energy storage. Ind. Eng. Chem. Res. 58(25), 10652–10677 (2019). https://doi.org/10.1021/acs.iecr.9b01693

    Article  CAS  Google Scholar 

  44. S. Li, W. Zeng, B. Wang, H. Xu, Y. Peng, Obtaining three cleaner products under an integrated municipal sludge resources scheme: Struvite, short-chain fatty acids and biological activated carbon. Chem. Eng. J. 380, 122567 (2020). https://doi.org/10.1016/j.cej.2019.122567

    Article  CAS  Google Scholar 

  45. P. Mishra, K. Stockmal, G. Ardito, M. Tao, S. Van Dessel, S. Granados-Focil, Thermo-optically responsive phase change materials for passive temperature regulation. Sol. Energy 197, 222–228 (2020). https://doi.org/10.1016/j.solener.2019.12.064

    Article  CAS  Google Scholar 

  46. Z. Qiu et al., Transparent wood with thermo-reversible optical properties based on phase-change material. Compos. Sci. Technol. 200, 108407 (2020). https://doi.org/10.1016/j.compscitech.2020.108407

    Article  CAS  Google Scholar 

  47. A. Samanta, H. Chen, P. Samanta, S. Popov, I. Sychugov, L.A. Berglund, Reversible dual-stimuli-responsive chromic transparent wood biocomposites for smart window applications. ACS Appl. Mater. Interfaces 13(2), 3270–3277 (2021). https://doi.org/10.1021/acsami.0c21369

    Article  CAS  Google Scholar 

  48. S. Al-Qahtani et al., Development of photoluminescent translucent wood toward photochromic smart window applications. Ind. Eng. Chem. Res. 60(23), 8340–8350 (2021). https://doi.org/10.1021/acs.iecr.1c01603

    Article  CAS  Google Scholar 

  49. S. Wang, H. Chen, K. Li, S. Koskela, L.A. Berglund, Q. Zhou, Strong, transparent, and thermochromic composite hydrogel from wood derived highly mesoporous cellulose network and PNIPAM. Compos. Part A Appl. Sci. Manuf. 154, 106757 (2022). https://doi.org/10.1016/j.compositesa.2021.106757

    Article  CAS  Google Scholar 

  50. S. Liu et al., Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows. Appl. Energy 297, 117207 (2021). https://doi.org/10.1016/j.apenergy.2021.117207

    Article  CAS  Google Scholar 

  51. Y. Li, E. Vasileva, I. Sychugov, S. Popov, L. Berglund, Optically transparent wood: recent progress, opportunities, and challenges. Adv. Opt. Mater. 6(14), 1800059 (2018). https://doi.org/10.1002/adom.201800059

    Article  CAS  Google Scholar 

  52. I. Wachter, T. Štefko, P. Rantuch, J. Martinka, A. Pastierová, Effect of UV radiation on optical properties and hardness of transparent wood. Polymers 13(13) (2021). https://doi.org/10.3390/polym13132067

  53. P. Bisht, K.K. Pandey, H.C. Barshilia, Photostable transparent wood composite functionalized with an UV-absorber. Polym. Degrad. Stab. 189, 109600 (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109600

    Article  CAS  Google Scholar 

  54. T. Künniger, M. Heeb, M. Arnold, Antimicrobial efficacy of silver nanoparticles in transparent wood coatings. Eur. J. Wood Wood Prod. 72(2), 285–288 (2014). https://doi.org/10.1007/s00107-013-0776-2

    Article  CAS  Google Scholar 

  55. J. Wang, J. Zhu, Prospects and applications of biomass-based transparent wood: an architectural glass perspective. Front. Chem. 9, 747385 (2021). https://doi.org/10.3389/fchem.2021.747385

    Article  CAS  Google Scholar 

  56. T. Li et al., Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6(22), 1601122 (2016). https://doi.org/10.1002/aenm.201601122

    Article  CAS  Google Scholar 

  57. X. Wang et al., Large-size transparent wood for energy-saving building applications. Chemsuschem 11(23), 4086–4093 (2018). https://doi.org/10.1002/cssc.201801826

    Article  CAS  Google Scholar 

  58. Y. Wu, J. Wu, F. Yang, C. Tang, Q. Huang, Effect of H(2)O(2) bleaching treatment on the properties of finished transparent wood. Polymers (Basel) 11(5) (2019). https://doi.org/10.3390/polym11050776

  59. C. Montanari, Y. Ogawa, P. Olsén, L.A. Berglund, High performance, fully bio-based, and optically transparent wood biocomposites. Adv. Sci. 8(12), 2100559 (2021). https://doi.org/10.1002/advs.202100559

    Article  CAS  Google Scholar 

  60. Q. Yin, H. Liu, Application of wood material in automobile interior. For. Mach. Woodwork. Equip. 48(11), 51–53 (2020). https://doi.org/10.13279/j.cnki.fmwe.2020.0134

    Article  Google Scholar 

  61. L. Zhang, A. Wang, T. Zhu, Z. Chen, Y. Wu, Y. Gao, Transparent wood composites fabricated by impregnation of epoxy resin and W-doped VO2 nanoparticles for application in energy-saving windows. ACS Appl. Mater. Interfaces 12(31), 34777–34783 (2020). https://doi.org/10.1021/acsami.0c06494

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Wachter .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wachter, I., Rantuch, P., Štefko, T. (2023). Smart Windows. In: Transparent Wood Materials. Springer Series in Materials Science, vol 330. Springer, Cham. https://doi.org/10.1007/978-3-031-23405-7_7

Download citation

Publish with us

Policies and ethics