Skip to main content

Properties of Transparent Wood

  • Chapter
  • First Online:
Transparent Wood Materials

Abstract

Due to the distinctive structures that result from its natural growth, wood is a commonly utilized structural material with exceptional mechanical qualities. Different woods exhibit an incredible range of mesostructures depending on their kinds and geographic variances. In recent years, interest in transparent wood (TW), a biocomposite material with optical transparency in the visible range, has increased due to its enormous potential for environmentally beneficial applications, such as in the building sector and functionalized organic materials. The aim of this chapter is to describe the latest progress in the field of material properties (mechanical, optical, electromagnetic) of transparent wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Chen et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5(9), 642–666 (2020)

    Article  CAS  Google Scholar 

  2. Y. Li, E. Vasileva, I. Sychugov, S. Popov, L. Berglund, Optically transparent wood: recent progress, opportunities, and challenges. Adv. Opt. Mater. 6(14), 1800059 (2018). https://doi.org/10.1002/adom.201800059

    Article  CAS  Google Scholar 

  3. Y. Huang et al., Wood derived composites for high sensitivity and wide linear-range pressure sensing. Small 14(31), 1801520 (2018). https://doi.org/10.1002/smll.201801520

    Article  CAS  Google Scholar 

  4. E. Vasileva et al., Light scattering by structurally anisotropic media: a benchmark with transparent wood. Adv. Opt. Mater. 6(23), 1800999 (2018). https://doi.org/10.1002/adom.201800999

    Article  CAS  Google Scholar 

  5. I. Burgert, E. Cabane, C. Zollfrank, L. Berglund, Bio-inspired functional wood-based materials—hybrids and replicates. Int. Mater. Rev. 60(8), 431–450 (2015). https://doi.org/10.1179/1743280415Y.0000000009

    Article  CAS  Google Scholar 

  6. H. Zhu et al., Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016). https://doi.org/10.1021/acs.chemrev.6b00225

    Article  CAS  Google Scholar 

  7. H. Zhu et al., Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10(1), 1369–1377 (2016). https://doi.org/10.1021/acsnano.5b06781

    Article  CAS  Google Scholar 

  8. C. Huang, J. He, Y. Wang, D. Min, Q. Yong, Associating cooking additives with sodium hydroxide to pretreat bamboo residues for improving the enzymatic saccharification and monosaccharides production. Bioresour. Technol. 193, 142–149 (2015). https://doi.org/10.1016/j.biortech.2015.06.073

    Article  CAS  Google Scholar 

  9. M. Zhu et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427

    Article  CAS  Google Scholar 

  10. S. Fink, Transparent wood—a new approach in the functional study of wood structure. Holzforschung—Int. J. Biol. Chem. Phys. Technol. Wood 46, 403 (1992). https://doi.org/10.1515/hfsg.1992.46.5.403

  11. Y. Li, Q. Fu, S. Yu, M. Yan, L. Berglund, Optically Transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromol 17(4), 1358–1364 (2016). https://doi.org/10.1021/acs.biomac.6b00145

    Article  CAS  Google Scholar 

  12. T. Keplinger, E. Cabane, J.K. Berg, J.S. Segmehl, P. Bock, I. Burgert, Smart hierarchical bio-based materials by formation of stimuli-responsive hydrogels inside the microporous structure of wood. Adv. Mater. Interfaces 3(16), 1600233 (2016). https://doi.org/10.1002/admi.201600233

    Article  Google Scholar 

  13. T. Nilsson, R. Rowell, Historical wood—structure and properties. J. Cult. Herit. 13(3 Supplement), S5–S9 (2012). https://doi.org/10.1016/j.culher.2012.03.016

    Article  Google Scholar 

  14. H. Chen et al., Refractive index of delignified wood for transparent biocomposites. RSC Adv. 10(67), 40719–40724 (2020). https://doi.org/10.1039/D0RA07409H

    Article  CAS  Google Scholar 

  15. Y. Li, X. Yang, Q. Fu, R. Rojas, M. Yan, L. Berglund, Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A 6(3), 1094–1101 (2018). https://doi.org/10.1039/C7TA09973H

    Article  CAS  Google Scholar 

  16. Q. Fu, M. Yan, E. Jungstedt, X. Yang, Y. Li, L.A. Berglund, Transparent plywood as a load-bearing and luminescent biocomposite. Compos. Sci. Technol. 164, 296–303 (2018). https://doi.org/10.1016/j.compscitech.2018.06.001

    Article  CAS  Google Scholar 

  17. X. Wang et al., Large-size transparent wood for energy-saving building applications. Chemsuschem 11(23), 4086–4093 (2018). https://doi.org/10.1002/cssc.201801826

    Article  CAS  Google Scholar 

  18. H. Li, X. Guo, Y. He, R. Zheng, A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites. J. Mater. Res. 34(6), 932–940 (2019). https://doi.org/10.1557/jmr.2018.466

    Article  CAS  Google Scholar 

  19. A.W. Lang et al., Transparent wood smart windows: polymer electrochromic devices based on poly(3,4-Ethylenedioxythiophene):poly(Styrene Sulfonate) electrodes. Chemsuschem 11(5), 854–863 (2018). https://doi.org/10.1002/cssc.201702026

    Article  CAS  Google Scholar 

  20. M. Zhu et al., Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26, 332–339 (2016). https://doi.org/10.1016/j.nanoen.2016.05.020

    Article  CAS  Google Scholar 

  21. Y. Li, S. Yu, J.G.C. Veinot, J. Linnros, L. Berglund, I. Sychugov, Luminescent transparent wood. Adv. Opt. Mater. 5(1), 1600834 (2017). https://doi.org/10.1002/adom.201600834

    Article  CAS  Google Scholar 

  22. E. Vasileva, Y. Li, I. Sychugov, M. Mensi, L. Berglund, S. Popov, Lasing from organic dye molecules embedded in transparent wood. Adv. Opt. Mater. 5(10), 1700057 (2017). https://doi.org/10.1002/adom.201700057

    Article  CAS  Google Scholar 

  23. W. Gan, L. Gao, S. Xiao, W. Zhang, X. Zhan, J. Li, Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template. J. Mater. Sci. 52(6), 3321–3329 (2017). https://doi.org/10.1007/s10853-016-0619-8

    Article  CAS  Google Scholar 

  24. C. Montanari, Y. Li, H. Chen, M. Yan, L.A. Berglund, Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl. Mater. Interfaces 11(22), 20465–20472 (2019). https://doi.org/10.1021/acsami.9b05525

    Article  CAS  Google Scholar 

  25. Z. Yu et al., Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A 5(13), 6019–6024 (2017). https://doi.org/10.1039/C7TA00261K

    Article  CAS  Google Scholar 

  26. L. Ding, X. Han, L. Chen, S. Jiang, Preparation and properties of hydrophobic and transparent wood. J. Bioresour. Bioprod. (2022). https://doi.org/10.1016/j.jobab.2022.02.001

    Article  Google Scholar 

  27. N.A. Muhammad, B. Armynah, D. Tahir, High transparent wood composite for effective X-ray shielding applications. Mater. Res. Bull. 154, 111930 (2022). https://doi.org/10.1016/j.materresbull.2022.111930

    Article  CAS  Google Scholar 

  28. ASTM, Standard test method for haze and luminous transmittance of transparent plastics ASTM D1003–00. (West Conshohocken, 2000), pp. 7. https://doi.org/10.1520/D1003-00

  29. TAPPI, Acid-insoluble lignin in wood and pulp. Test Method T 222 om-2 (2002)

    Google Scholar 

  30. ASTM, standard test method for flexural properties of polymer matrix composite materials ASTM D7264 (2015). https://doi.org/10.1520/D7264_D7264M-15

  31. T. Keplinger, F.K. Wittel, M. Rüggeberg, I. Burgert, Wood derived cellulose scaffolds—processing and mechanics. Adv. Mater. 33(28), 2001375 (2021). https://doi.org/10.1002/adma.202001375

    Article  CAS  Google Scholar 

  32. H. Chen, C. Montanari, R. Shanker, S. Marcinkevicius, L.A. Berglund, I. Sychugov, Photon walk in transparent wood: scattering and absorption in hierarchically structured materials. Adv. Opt. Mater. 10(8), 2102732 (2022). https://doi.org/10.1002/adom.202102732

    Article  CAS  Google Scholar 

  33. P. Chen et al., Small angle neutron scattering shows nanoscale PMMA distribution in transparent wood biocomposites. Nano Lett. 21(7), 2883–2890 (2021). https://doi.org/10.1021/acs.nanolett.0c05038

    Article  CAS  Google Scholar 

  34. J. Pang et al., Light propagation in transparent wood: efficient ray-tracing simulation and retrieving an effective refractive index of wood scaffold. Adv. Photonics Res. 2(11), 2100135 (2021). https://doi.org/10.1002/adpr.202100135

    Article  Google Scholar 

  35. H. Chen et al., Thickness dependence of optical transmittance of transparent wood: chemical modification effects. ACS Appl. Mater. Interfaces 11(38), 35451–35457 (2019). https://doi.org/10.1021/acsami.9b11816

    Article  CAS  Google Scholar 

  36. J. Wu, Y. Wu, F. Yang, C. Tang, Q. Huang, J. Zhang, Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos. Part A Appl. Sci. Manuf. 117, 324–331 (2019). https://doi.org/10.1016/j.compositesa.2018.12.004

    Article  CAS  Google Scholar 

  37. K.E.O. Foster, R. Jones, G.M. Miyake, W.V. Srubar, Mechanics, optics, and thermodynamics of water transport in chemically modified transparent wood composites. Compos. Sci. Technol. 208, 108737 (2021). https://doi.org/10.1016/j.compscitech.2021.108737

    Article  CAS  Google Scholar 

  38. E. Jungstedt, C. Montanari, S. Östlund, L. Berglund, Mechanical properties of transparent high strength biocomposites from delignified wood veneer. Compos. Part A Appl. Sci. Manuf. 133, 105853 (2020). https://doi.org/10.1016/j.compositesa.2020.105853

    Article  CAS  Google Scholar 

  39. H. Yang, M. Gao, J. Wang, H. Mu, D. Qi, Fast preparation of high-performance wood materials assisted by ultrasonic and vacuum impregnation. Forests 12(5) (2021). https://doi.org/10.3390/f12050567

  40. L. Xingjun et al., A new absorbing foam concrete: preparation and microwave absorbing properties. Adv. Concr. Constr. 3, 103–111 (2015). https://doi.org/10.12989/acc.2015.3.2.103

    Article  Google Scholar 

  41. S.-S. Cho, J.-S. Yoo, J.-M. Kim, I.-P. Hong, Prediction of electromagnetic transmission properties using dielectric property modeling of foamed concrete containing BFS. Constr. Build. Mater. 151, 650–660 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.108

    Article  Google Scholar 

  42. F. Jiang et al., Wood-based nanotechnologies toward sustainability. Adv. Mater. 30(1), 1703453 (2018). https://doi.org/10.1002/adma.201703453

    Article  CAS  Google Scholar 

  43. S.-S. Cho, S.-H. Song, I.-P. Hong, Analysis of the electromagnetic properties of eco-friendly transparent wood. Microw. Opt. Technol. Lett. 63(9), 2237–2241 (2021). https://doi.org/10.1002/mop.32385

    Article  Google Scholar 

  44. V. Majová, S. Horanová, A. Škulcová, J. Šima, M. Jablonský, Deep eutectic solvent delignification: impact of initial lignin. Bioresour. 12(4) (2017)

    Google Scholar 

  45. Z. Bi, T. Li, H. Su, Y. Ni, L. Yan, Transparent wood film incorporating carbon dots as encapsulating material for white light-emitting diodes. ACS Sustain. Chem. Eng. 6(7), 9314–9323 (2018). https://doi.org/10.1021/acssuschemeng.8b01618

    Article  CAS  Google Scholar 

  46. Y. Zhou, M. Layani, F.Y.C. Boey, I. Sokolov, S. Magdassi, Y. Long, Electro-thermochromic devices composed of self-assembled transparent electrodes and hydrogels. Adv. Mater. Technol. 1(5), 1600069 (2016). https://doi.org/10.1002/admt.201600069

    Article  CAS  Google Scholar 

  47. Y. Zhou, Y. Cai, X. Hu, Y. Long, Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for ‘smart window’ applications. J. Mater. Chem. A 2(33), 13550–13555 (2014). https://doi.org/10.1039/C4TA02287D

    Article  CAS  Google Scholar 

  48. K. Cao, D.E. Shen, A.M. Österholm, J.A. Kerszulis, J.R. Reynolds, Tuning color, contrast, and redox stability in high gap cathodically coloring electrochromic polymers. Macromolecules 49(22), 8498–8507 (2016). https://doi.org/10.1021/acs.macromol.6b01763

    Article  CAS  Google Scholar 

  49. W. Wu, H. Tian, A. Xiang, Influence of polyol plasticizers on the properties of polyvinyl alcohol films fabricated by melt processing. J. Polym. Environ. 20(1), 63–69 (2012). https://doi.org/10.1007/s10924-011-0364-7

    Article  CAS  Google Scholar 

  50. H. Chandrappa, R.F. Bhajantri, Ranjitha, Shwetha, N. Prarthana, Simple fabrication of PVA-ATE (Amaranthus tricolor leaves extract) polymer biocomposites: an efficient UV-shielding material for organisms in terrestrial and aquatic ecosystems. Opt. Mater. (Amst). 109, 110204 (2020). https://doi.org/10.1016/j.optmat.2020.110204

  51. D. Yue, G. Fu, Z. Jin, Transparent wood prepared by polymer impregnation of rubber wood (Hevea brasiliensis Muell. Arg). BioResources 16, 2491–2502 (2021). https://doi.org/10.15376/biores.16.2.2491-2502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Wachter .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wachter, I., Rantuch, P., Štefko, T. (2023). Properties of Transparent Wood. In: Transparent Wood Materials. Springer Series in Materials Science, vol 330. Springer, Cham. https://doi.org/10.1007/978-3-031-23405-7_1

Download citation

Publish with us

Policies and ethics