Skip to main content

Therapeutic Potential of Bryophytes and Its Future Perspective

  • Reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 184 Accesses

Abstract

Plants have many therapeutic potential for curing various ailments of human beings. However, the study of bryophytes considering their therapeutic potential toward human beings is still in its infancy. Recent public demand for plant-based medicine, as well as the emergence of antibiotic-resistant microorganisms, has prompted biologists to seek out novel plant-based natural medicines. Furthermore, bryophyte’s potential antibacterial capabilities can be utilized for medicinal purposes against the relevant infection. Current studies on bioactive compounds in bryophytes have revealed significant multiple numbers of secondary metabolites in this elegant group of plants. Hence, this study aims to review the recent research on their clinical activities with respect to antidiabetic, anti-inflammatory, antimicrobial, antitumor, and antioxidant properties corresponding to the ethnomedicinal reports throughout the different communities of the world. It has immense value in near future considering the bioprocesses of their genome, as well as innovative drug discovery by using genetic engineering and biotechnology. Some of the important bioactive compounds in different bryophytes are benzyl benzoate, p-hydroxycinnamic acid, 7,8-dihydroxycoumarin, marchantins, riccardins, triterpenoid saponin, tetracyclic diterpene, sesquiterpenes, diplophyllin, plagiochiline, plagiochin E, and perrotetin E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Akt:

Protein kinase B

COX:

Cyclooxygenase

H1N1:

Hemagglutinin type 1 and neuraminidase type 1

HL:

Human leukemia

KB:

Ubiquitous KERATIN-forming tumor cell line

LOX:

Lipoxygenase

LPS:

Lipopolysaccharide

LXR:

The liver-X-receptor

MB:

Metastatic breast

MDA:

Malondialdehyde

MDR:

Multidrug-resistant

MRSA:

Methicillin-resistant Staphylococcus aureus

NF-kB:

Nuclear factor kappa B

NO:

Nitric oxide

PC:

Prostate cancer

References

  1. Asakawa Y (1981) Biologically active substances obtained from bryophytes. J Hattori Bot Lab 50:123–142

    CAS  Google Scholar 

  2. Asakawa Y (1982) Chemical constituents of the Hepaticae. In: Fortschritte der Chemie Organischer Naturstoffe/Progress in the chemistry of organic natural products. Springer, Vienna, pp 1–285

    Chapter  Google Scholar 

  3. Asakawa Y (1990) Biologically active substances from bryophytes. In: Bryophyte development: physiology and biochemistry. CRC Press, London, pp 259–287

    Google Scholar 

  4. Asakawa Y (2007) Biologically active compounds from bryophytes. Pure Appl Chem 79:557–580

    Article  CAS  Google Scholar 

  5. Awouafack MD, Tane P, Kuete V, Eloff JN (2013) Chapter 2: Sesquiterpenes from the medicinal plants of Africa. In: Kuete V (ed) Medicinal plant research in Africa. Elsevier, Oxford, pp 33–103

    Chapter  Google Scholar 

  6. Azuelo AG, Sariana LG, Pabualan MP (2011) Some medicinal bryophytes: their ethnobotanical uses and morphology. Asian J Biodiversity 2(1):49–80

    Article  Google Scholar 

  7. Bandyopadhyay A, Dey A (2022) The ethno-medicinal and pharmaceutical attributes of bryophytes: a review. Phytomed Plus:100–255

    Google Scholar 

  8. Beike AK, Decker EL, Frank W, Lang D, Vervliet-Scheebaum M, Zimmer AD et al (2010) Applied bryology-bryotechnology. Bryophyte Diversity Evol 31:22–32

    Article  Google Scholar 

  9. Biswas T, Dwivedi UN (2019) Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. Protoplasma 256(6):1463–1486

    Article  CAS  PubMed  Google Scholar 

  10. Buchanan MS, Connolly JD, Rycroft DS (1996) Herbertane sesquiterpenoids from the liverworts Herbertus aduncus and H. borealis. Phytochemistry 43:1245–1248

    Article  CAS  Google Scholar 

  11. Buck WR, Allen BH, Pursell RA (2005) Recent literature on bryophytes. Bryologist 108:158–175

    Article  Google Scholar 

  12. Bukvicki D, Gottardi D, Veljic M, Marin PD, Vannini L, Guerzoni ME (2012) Identification of volatile components of liverwort (Porella cordaeana) extracts using GC/MS-SPME and their antimicrobial activity. Molecules 17:6982–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chandra S, Chandra D, Barh A, Pankaj, Pandey RK, Sharma IP (2016) Bryophytes: hoard of remedies, an ethno-medicinal review. J Tradit Complement Med 7:94–98

    Article  PubMed  PubMed Central  Google Scholar 

  14. Choi SZ, Choi SU, Bae SY, Pyo SN, Lee KR (2005) Immunobioloical activity of a new benzyl benzoate from the aerial parts of Solidago virgaaurea var.gigantea. Arch Pharm Res 28:49

    Article  CAS  PubMed  Google Scholar 

  15. Desai SD, Desai DG, Kaur H (2009) Saponins and their biological activities. Pharma Times 41:13–16

    Google Scholar 

  16. Dey A, Mukherjee A (2015) Therapeutic potential of bryophytes and derived compounds against cancer. J Acute Dis 4:236–248

    Article  Google Scholar 

  17. Ding H (1982) Medicinal spore-bearing plants of China. Shanghai Science and Technology Press, Shanghai, pp 1–409

    Google Scholar 

  18. Frahm JP (2004) Recent developments of commercial products from bryophytes. Bryologist 107:277–283

    Article  Google Scholar 

  19. Geetha B, Nair MS, Latha PG, Remani P (2012) Sesquiterpene lactones isolated from Elephantopus scaber L. inhibits human lymphocyte proliferation and the growth of tumour cell lines and induces apoptosis in vitro. J Biotechnol Biomed 2012:721285

    Article  CAS  Google Scholar 

  20. Glime JM (2007) Economic and ethnic uses of bryophytes. Flora North Am 27:14–41

    Google Scholar 

  21. Hanson JR (2013) The tetracyclic diterpenes. Elsevier

    Google Scholar 

  22. Harris ES (2008) Ethnobryology: traditional uses and folk classification of bryophytes. Bryologist:169–217

    Google Scholar 

  23. Heinrichs J, Groth H, Gradstein SR, Rycroft DS, Cole WJ, Anton H (2001) Plagiochilarutilans (Hepaticae): a poorly known species from tropical America. Bryologist 104:350–361

    Article  CAS  Google Scholar 

  24. Ivković I, Novaković M, Veljić M, Mojsin M, Stevanović M, Marin PD, Bukvički D (2021) Bis-bibenzyls from the liverwort Pellia endiviifolia and their biological activity. Plan Theory 10:1063

    Google Scholar 

  25. Iwai Y, Murakami K, Gomi Y, Hashimoto T, Asakawa Y, Okuno Y, Ishikawa T, Hatakeyama D, Echigo N, Kuzuhara T (2011) Anti-influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts. PLoS One 6:e19825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jantwal A, Rana M, Joshi Rana A, Upadhyay J, Durgapal S (2019) Pharmacological potential of genus Marchantia: a review. J Pharmacogn Phytochem 8:641–645

    CAS  Google Scholar 

  27. Jensen JSR, Omarsdottir S, Thorsteinsdottir JB, Ogmundsdottir HM, Olafsdottir ES (2012) Synergistic cytotoxic effect of the microtubule inhibitor marchantin A from Marchantia polymorpha and the Aurora kinase inhibitor MLN8237 on breast cancer cells in vitro. Planta Med 78:448–454

    Article  CAS  PubMed  Google Scholar 

  28. Jensen S, Omarsdottir S, Bwalya AG, Nielsen MA, Tasdemir D, Olafsdottir ES (2012) Marchantin A, a macrocyclic bisbibenzyl ether, isolated from the liverwort Marchantia polymorpha, inhibits protozoal growth in vitro. Phytomedicine 19:1191–1195

    Article  CAS  PubMed  Google Scholar 

  29. Kocazorbaz EK, Kerem T, Moulahoum H, Ün RN (2021) Phytochemical and bioactivity analysis of several methanolic extracts of nine bryophytes species. Sakarya Univ J Sci 25:938–94931

    Article  Google Scholar 

  30. Komala I, Ito T, Nagashima F, Yagi Y, Asakawa Y (2010) Cytotoxic, radical scavenging and antimicrobial activities of sesquiterpenoids from the Tahitian liverwort Mastigophora diclados (Brid.) Nees (Mastigophoraceae). J Nat Med 64:417–422

    Article  CAS  PubMed  Google Scholar 

  31. Li HB (2014) Research on antiviral constituents in Re-Du-Ning injection (I). Chin Tradit Herb Drugs 45:1682–1688

    CAS  Google Scholar 

  32. Lone R, Shuab R, Koul K (2014) Role of cinnamate and cinnamate derivatives in pharmacology. Glob J Pharmacol 8:328–335

    CAS  Google Scholar 

  33. Ludwiczuk A, Asakawa Y (2019) Bryophytes as a source of bioactive volatile terpenoids – a review. Food Chem Toxicol 132:110649

    Article  CAS  PubMed  Google Scholar 

  34. Ludwiczuk A, Asakawa Y (2020) Terpenoids and aromatic compounds from bryophytes and their central nervous system activity. Curr Org Chem 24:113–128

    Article  CAS  Google Scholar 

  35. Mahato SB, Sarkar SK, Poddar G (1988) Triterpenoid saponins. Phytochemistry 27:3037–3067

    Article  CAS  Google Scholar 

  36. Mandić MR, Oalđe MM, Lunić TM, Sabovljević AD, Sabovljević MS, Gašić UM et al (2021) Chemical characterization and in vitro immunomodulatory effects of different extracts of moss Hedwigia ciliata (Hedw.) P. Beauv. from the Vršačke Planine Mts., Serbia. PLoS One 16(2):e0246810

    Article  PubMed  PubMed Central  Google Scholar 

  37. Marko S, Aneta B, Dragoljub G (2001) Bryophytes as a potential source of medicinal compounds. Pregl Rev 21:17–29

    Google Scholar 

  38. Marques RV, Sestito SE, Bourgaud F, Miguel S, Cailotto F, Reboul P, Jouzeau J-Y, Rahuel-Clermont S, Boschi-Muller S, Simonsen HT (2022) Anti-inflammatory activity of bryophytes extracts in LPS-stimulated RAW264. 7 murine macrophages. Molecules 27:1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matsuo A, Yuki S, Higashi R, Nakayama M, Hayashi S (1982) Structure and biological activity of several sesquiterpenoids having a novel herbertane skeleton from the liverwort Herberta adunca. In: Book structure and biological activity of several sesquiterpenoids having a novel herbertane skeleton from the liverwort Herberta adunca. Papers Tokyo, pp 242–249

    Google Scholar 

  40. Matsuo A, Yuki S, Nakayama M, Hayashi S (1982) Three new sesquiterpene phenols of the ent-herbertane class from the liverwort Herberta adunca. Chem Lett 11:463–466

    Article  Google Scholar 

  41. Matsuo A, Yuki S, Nakayama M (1983)(−)-Herbertenediol and(−)-herbertenolide, two new sesquiterpenoids of the ent-herbertane class from the liverwort Herberta adunca. Chem Lett 12:1041–104243

    Article  Google Scholar 

  42. Matsuo A, Nozaki H, Kubota N, Uto S, Nakayama M (1984) Structures and conformations of(–)-isobicyclogermacrenal and(–)-lepidozenal, two key sesquiterpenoids of the cis-and trans-10, 3-bicyclic ring systems, from the liverwort Lepidozia vitrea: X-ray crystal structure analysis of the hydroxy derivative of(–)-isobicyclogermacrenal. J Chem Soc Perkin Trans 1:203–214 41 41

    Article  Google Scholar 

  43. Mishra R, Pandey VK, Chandra R (2014) Potentialofbryophytes as therapeutics. Int J Pharm Sci Res 5:3584–3593

    Google Scholar 

  44. Monteiro IN, Monteiro ODS, Costa-Junior LM, da Silva Lima A, Andrade EHDA, Maia JGS, Mouchrek Filho VE (2017) Chemical composition and acaricide activity of an essential oil from a rare chemotype of Cinnamomum verum Presl on Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 238:54–57

    Article  CAS  PubMed  Google Scholar 

  45. Mukhia S, Mandal P, Singh D, Singh D (2017) Study of bioactive phytoconstituents and in-vitro pharmacological properties of Thallose Liverworts of Darjeeling Himalaya. J Pharm Res 11:490–501

    CAS  Google Scholar 

  46. Mukhia S, Mandal P, Singh D, Singh D (2019) Comparison of pharmacological properties and phytochemical constituents of in vitro propagated and naturally occurring liverwort Lunularia cruciata. BMC Complement Altern Med 19:1–16

    Article  Google Scholar 

  47. Namsa ND, Tag H, Mandal M, Kalita P, Das AK (2009) An ethnobotanical study of traditional anti-inflammatory plants used by the Lohit community of Arunachal Pradesh, India. J Ethnopharmacol 125:234–245

    Article  PubMed  Google Scholar 

  48. Naß J, Efferth T (2018) The activity of Artemisia spp. and their constituents against trypanosomiasis. Phytomedicine 47:184–191

    Article  PubMed  Google Scholar 

  49. Niu C, Qu JB, Lou HX (2006) Antifungal bis [bibenzyls] from the Chinese liverwortMarchantia polymorpha L. Chem Biodivers 3:34–40

    Article  CAS  PubMed  Google Scholar 

  50. Novakovic M, Bukvicki D, Andjelkovic B, Ilic-Tomic T, Veljic M, Tesevic V, Asakawa Y (2019) Cytotoxic activity of riccardin and perrottetin derivatives from the liverwort Lunularia cruciata. J Nat Prod 82:694–701

    Article  CAS  PubMed  Google Scholar 

  51. Ohno O, Ye M, Koyama T, Yazawa K, Mura E, Matsumoto H, Ichino T, Yamada K, Nakamura K, Ohno T, Yamaguchi K, Ishida J, Fukamizu A, Uemura D (2008) Inhibitory effects of benzyl benzoate and its derivatives on angiotensin II-induced hypertension. Bioorg Med Chem 16:7843–7852

    Article  CAS  PubMed  Google Scholar 

  52. Oyedapo OO, Makinde AM, Ilesanmi GM, Abimbola EO, Akinwunmi KF, Akinpelu BA (2015) Biological activities (anti-inflammatory and anti-oxidant) of fractions and methanolic extract of Philonotis hastate (Duby Wijk & MargaDant). Afr J Tradit Complement Altern Med 12:50–55

    CAS  Google Scholar 

  53. Pejin B, Newmaster S, Sabovljevic M, Miloradovic Z, Grujic-Milanovic J, Ivanov M et al (2011) Antihypertensive effect of the moss Rhodobryum ontariense in vivo. J Hypertens 29:e315–e316

    Article  Google Scholar 

  54. Pejin B, Vujisic L, Sabovljevic M, Tesevic V, Vajs V (2011) Preliminary data on essential oil composition of the moss Rhodobryum ontariense (Kindb.) Kindb. Cryptogam Bryol 32:113–117

    Article  Google Scholar 

  55. Pinheiro MdFdS, Lisboa RCL, Brazão RdV (1989) Contribuição ao estudo de briófitas como fontes de antibióticos. Acta Amazon 19: 139–145

    Google Scholar 

  56. Radwan SS (1991) Sources of C20-polyunsaturated fatty acids for biotechnological use. Appl Microbiol Biotechnol 35:421–430

    Article  CAS  Google Scholar 

  57. Remesh M, Manju C (2009) Ethnobryological notes from Western Ghats, India. Bryologist 111:532–537

    Article  Google Scholar 

  58. Sabovljevi A, Sokovi M, Pejin B, Sabovljevi M (2010) Comparison of extract bioactivities of in-situ and vitro grown selected bryophyte species. Afr J Microbiol Res 4:808–812

    Google Scholar 

  59. Sabovljevi A, Sokovi M, Pejin B, Sabovljevi M (2011) Bio-activities of extracts from some axenically farmed and naturally grown bryophytes. J Med Plant Res 5:565–571

    Google Scholar 

  60. Saxena D (2004) Uses of bryophytes. Resonance 9:56–65

    Article  Google Scholar 

  61. Saxena DK, Harinder (2004) Uses of bryophytes. Resonance 9:56–65

    Article  Google Scholar 

  62. Sharma G, Dhankar G, Thakur K, Raza K, Katare OP (2016) Benzyl benzoate-loaded microemulsion for topical applications: enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech 17:1221–1231

    Article  CAS  PubMed  Google Scholar 

  63. Smyrniotopoulos V, Vagias C, Rahman MM, Gibbons S, Roussis V (2010) Ioniols I and II, tetracyclic diterpenes with antibacterial activity, from Sphaerococcus coronopifolius. Chem Biodivers 7:666–676

    Article  CAS  PubMed  Google Scholar 

  64. Sotanaphun U, Lipipun V, Suttisri R, Bavovada R (1999) A new antiviral and antimicrobial sesquiterpene from Glyptopetalum sclerocarpum. Planta Med 65:257–258

    Article  CAS  PubMed  Google Scholar 

  65. Speicher A, Groh M, Zapp J, Schaumlöffel A, Knauer M, Bringmann G (2009) A synthesis-driven structure revision of ‘plagiochin E’, a highly bioactive bisbibenzyl. Synlett 2009:1852–1858

    Article  Google Scholar 

  66. Stivers NS, Islam A, Reyes-Reyes EM, Casson LK, Aponte JC, Vaisberg AJ, Hammond GB, Bates PJ (2018) Plagiochiline A inhibits cytokinetic abscission and induces cell death. Molecules 23:1418

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tatipamula VB, Killari KN, Ketha A, Sastry VG (2017) Taxithelium napalense acts against free radicals and diabetes mellitus. Bangladesh J Pharmacol 12:197–203

    Article  Google Scholar 

  68. Tatipamula VB, Ketha A, Nallapaty S, Kottana H, Koneru ST (2021) Moss Octoblepharum albidum Hedw.: isolation, characterization, in vitro and in vivo antidiabetic activities. Adv Tradit Med 21:351–360

    Article  CAS  Google Scholar 

  69. Tchuendem MHK, Mbah JA, Tsopmo A, Foyere Ayafor J, Sterner O, Okunjic CC, Iwu MM, Schuster BM (1999) Anti-plasmodial sesquiterpenoids from the African Reneilmia cincinnata. Phytochemistry 52:1095–1099

    Article  CAS  PubMed  Google Scholar 

  70. Tosun A, Küpeli Akkol E, Süntar I, Özenoğlu Kiremit H, Asakawa Y (2013) Phytochemical investigations and bioactivity evaluation of liverworts as a function of anti-inflammatory and antinociceptive properties in animal models. Pharm Biol 51:1008–1013

    Article  CAS  PubMed  Google Scholar 

  71. Toyota M, Tori M, Takikawa K, Shiobara Y, Kodama M, Asakawa Y (1985) Perrottetins E, F, and G from Radula perrottetii (liverwort) – isolation, structure determination, and synthesis of perrottetine. Tetrahedron Lett 26:6097–6100

    Article  CAS  Google Scholar 

  72. Vashistha H, Dubey R, Pandey N (2007) Antimicrobial activity of three bryophytes against human pathogens. In: Current trends in bryology. Bishen Singh Mahendra Pal Singh, Dehra Dun, pp 47–59

    Google Scholar 

  73. Villa-Ruano N, Lozoya-Gloria E, Pacheco-Hernández Y (2016) Kaurenoic acid: a diterpene with a wide range of biological activities. Stud Nat Prod Chem 51:151–174

    Article  CAS  Google Scholar 

  74. Vinayagam R, Xu B (2017) 7, 8-Dihydroxycoumarin (daphnetin) protects INS-1 pancreatic β-cells against streptozotocin-induced apoptosis. Phytomedicine 24:119–126

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, Li C-F, Pan L-M, Gao Z-L (2013) 7, 8-Dihydroxycoumarin inhibits A549 human lung adenocarcinoma cell proliferation by inducing apoptosis via suppression of Akt/NF-κB signaling. Exp Ther Med 5:1770–1774

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang K-H, Li S-F, Zhao Y, Li H-X, Zhang L-W (2018) In vitro anticoagulant activity and active components of safflower injection. Molecules 23:170

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wren RC (1956) Potter’s new cyclopaedia of botanical drugs and preparations. Pitmann, London

    Google Scholar 

  78. Wu P (1982) Some uses of mosses in China. Bryol Times 13:5–7

    Google Scholar 

  79. Wu C-L, Chien S-C, Wang S-Y, Kuo Y-H, Chang S-T (2005) Structure-activity relationships of cadinane-type sesquiterpene derivatives against wood-decay fungi. Wood Res Technol 59:620–627

    CAS  Google Scholar 

  80. Yayintas OT, Irkin LC (2018) Bryophytes as hidden treasure. J Sci Perspect 2:71–82

    Google Scholar 

  81. Zhao P, Song C (2018) Macrocyclic bisbibenzyls: properties and synthesis. Stud Nat Prod Chem 55:73–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barukial, J., Hazarika, P. (2023). Therapeutic Potential of Bryophytes and Its Future Perspective. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-23243-5_7

Download citation

Publish with us

Policies and ethics