Skip to main content

Path Planning and Static Obstacle Avoidance for Unmanned Aerial Systems

  • Conference paper
  • First Online:
Advancements in Smart Computing and Information Security (ASCIS 2022)

Abstract

The recent advent of computational intelligence and the field of deep learning has shown a significant application for the task of efficient navigation of automated and unmanned vehicles. The notion of a robot intelligently deciding a path based on minimalistic spatial knowledge and operating in a collision-free manner illustrates significant real-world importance. This paper offers a novel study for determining the best strategy for robust path planning in a simulated environment sufficed with static obstacles. The paradigm of behavior cloning and imitation learning is extensively explored, these techniques have depicted a better analogy to the human brain hence, justifying the experiments. This paper also conducts extensive tests on the existing technologies as baselines for an unbiased comparison, these algorithms include Rapidly- exploring Random Tree (RRT), A* search algorithm, and an improved rendition of the Ant Colony Optimization (ACO). The algorithms developed are centric to Unmanned Aerial Systems (UAS) however a correlation is also shown to unmanned ground systems and other automated robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguinaga, I., Borro, D., Matey, L.: Parallel rrt-based path planning for selective disassembly planning. Int. J. Adv. Manufact. Technol. 36, 1221–1233 (2008). https://doi.org/10.1007/s00170-007-0930-2

  2. Banzhaf, H., Sanzenbacher, P., Baumann, U., Zollner, J.M.: Learning to predict ego-vehicle poses for sampling-based nonholonomic motion planning. IEEE Robot. Autom. Lett. 4(2), 1053–1060 (2019). https://doi.org/10.1109/lra.2019.2893975

  3. Chapter, A.S.: Suas 2022 rules (2022). https://www.auvsi-suas.org/competitions

  4. Chaudhuri, A.: A dynamic algorithm for the longest common subsequence problem using ant colony optimization technique (2013), http://arxiv.org/abs/1307.1905v1

  5. Choudhury, S., et al.: Data-driven planning via imitation learning. Int. J. Robot. Res. 37(13–14), 1632–1672 (2018). https://doi.org/10.1177/0278364918781001

  6. Codevilla, F., Muller, M., Lopez, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via conditional imitation learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2018). https://doi.org/10.1109/icra.2018.8460487

  7. DeGroote, N.S., Barnes, E., Burton, J., Terry, M., Ouwerkerk, J.N., Cohen, K.: A solution for the challenges presented by the 2020 AUVSI SUAS competition. In: AIAA Scitech 2021 Forum. American Institute of Aeronautics and Astronautics, p. 0522 (2021). https://doi.org/10.2514/6.2021-0522

  8. El-Dosuky, M.A.: CACO: competitive ant colony optimization, a nature- inspired metaheuristic for large-scale global optimization (2013). http://arxiv.org/abs/1312.4044v1

  9. Causa, F., Fasano, G.: Improved in-flight estimation of inertial biases through CDGNSS/vision based cooperative navigation. Sensors 21, 34069288 (2021). https://doi.org/10.3390/s21103438

  10. Guruji, A.K., Agarwal, H., Parsediya, D.: Time-efficient A* algorithm for robot path planning. Procedia Technol. 23, 144–149 (2016). https://doi.org/10.1016/j.protcy.2016.03.010,

  11. Wu, J., Luo, C., Luo, Y., Li, K.: Distributed UAV swarm formation and collision avoidance strategies over fixed and switching topologies. IEEE Trans. Cyber. 34951860 (2021). https://doi.org/10.1109/TCYB.2021.3132587

  12. Yan, K., Wu, Q.: Adaptive tracking flight control for unmanned autonomous helicopter with full state constraints and actuator faults. ISA Trans. 34865842 (2021). https://doi.org/10.1016/j.isatra.2021.11.012,

  13. Yang, L., Fu, L., Li, P., Mao, J., Guo, N., Du, L.: LF-ACO: an effective formation path planning for multi-mobile robot. Math. Biosci. Eng. 19(1), 225–252 (2022).https://doi.org/10.3934/mbe.2022012

  14. Levin, G.M.: Dijkstra’s method of program construction. Encyclopedia Softw. Eng. (2002). https://doi.org/10.1002/0471028959.sof093

  15. Li, J., Chen, Y., Zhao, X., Huang, J.: An improved DQN path planning algorithm. J. Supercomput. 78(1), 616–639 (2022)

    Article  Google Scholar 

  16. Luigi, P., Spagnolo, P.: Object tracking in multiple cameras with disjoint views. In: Object Tracking. InTech (2011). https://doi.org/10.5772/14220

  17. Murugesan, R., Mishra, E., Krishnan, A.H.: Deep learning based models: Basic LSTM, bi LSTM, stacked LSTM, CNN LSTM and conv LSTM to forecast agricultural commodities prices (2021). https://doi.org/10.21203/rs.3.rs-740568/v1

  18. Noreen, I., Khan, A., Habib, Z.: Optimal path planning using RRT* based approaches: a survey and future directions. Int. J. Adv. Comput. Sci. Appl. 7(11) (2016). https://doi.org/10.14569/ijacsa.2016.071114

  19. Santamaria-Navarro, A., Loianno, G., Sol`a, J., Kumar, V., Andrade-Cetto, J.: Autonomous navigation of micro aerial vehicles using high-rate and low-cost sensors. Auton. Rob. 42(6), 1263–1280 (2017). https://doi.org/10.1007/s10514-017-9690-5

  20. Tian, Y., et al.: Application of RRT-based local path planning algorithm in unknown environment. In: 2007 International Symposium on Computational Intelligence in Robotics and Automation, pp. 456-460. IEEE (2007). https://doi.org/10.1109/cira.2007.382896

  21. Torabi, F., Warnell, G., Stone, P.: Behavioral cloning from observation. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (2018). https://doi.org/10.24963/ijcai.2018/687

  22. Tsardoulias, E.G., Iliakopoulou, A., Kargakos, A., Petrou, L.: A review of global path planning methods for occupancy grid maps regardless of obstacle density. J. Intell. Robot. Syst. 84(1–4), 829–858 (2016). https://doi.org/10.1007/s10846-016-0362-z

  23. Vestias, M.P.: Convolutional neural network. In: Research Anthology on Artificial Neural Network Applications, pp. 1559–1575. IGI Global (2022). https://doi.org/10.4018/978-1-6684-2408-7.ch077

  24. Wallace, L., Lucieer, A., Watson, C., Turner, D.: Development of a UAV-lidar system with application to forest inventory. Remote Sens. 4(6), 1519–1543 (2012). https://doi.org/10.3390/rs4061519

  25. Wen, Y., Haiying, W., Zhisheng, Z.: Obstacle avoidance path planning of manipulator based on improved RRT algorithm. In: 2021 International Conference on Computer, Control and Robotics (IC- CCR), pp. 104-109. IEEE (2021). https://doi.org/10.1109/icccr49711.2021.9349398

  26. Wyder, P.M., et al.: Autonomous drone hunter operating by deep learning and all-onboard computations in GPS-denied environments. Plos One 14(11), e0225092 (2019). https://doi.org/10.1371/journal.pone.0225092

  27. Dai, X., Long, S., Zhang, Z., Gong, D.: Mobile robot path planning based on ant colony algorithm with a* heuristic method. Front, Neurorob. 13, 31057388 (2019). https://doi.org/10.3389/fnbot.2019.00015

  28. Xi, M., Yang, J., Wen, J., Liu, H., Li, Y., Song, H.H.: Comprehensive ocean information enabled AUV path planning via reinforcement learning. IEEE Internet Things J. (2022)

    Google Scholar 

  29. Xiang, D., Lin, H., Ouyang, J., Huang, D.: Combined improved a* and greedy algorithm for path planning of multi-objective mobile robot. Sci. Rep. 12(1), 1–12 (2022)

    Article  Google Scholar 

  30. Zammit, C., Van Kampen, E.J.: Comparison between a* and RRT algorithms for 3D UAV path planning. Unmanned Syst. 10(02), 129–146 (2022)

    Article  Google Scholar 

  31. Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for A* 23(4), 531–543 (2009). https://doi.org/10.1080/13658810801949850

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Mandaliya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gajjar, P., Dodia, V., Mandaliya, S., Shah, P., Ukani, V., Shukla, M. (2022). Path Planning and Static Obstacle Avoidance for Unmanned Aerial Systems. In: Rajagopal, S., Faruki, P., Popat, K. (eds) Advancements in Smart Computing and Information Security. ASCIS 2022. Communications in Computer and Information Science, vol 1760. Springer, Cham. https://doi.org/10.1007/978-3-031-23095-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23095-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23094-3

  • Online ISBN: 978-3-031-23095-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics