Skip to main content

On the Importance of Temporal Features in Domain Adaptation Methods for Action Recognition

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2022)

Abstract

One of the most common vision problems is Video based Action Recognition. Many public datasets, public contests, and so on, boosted the development of new methods to face the challenges posed by this problem. Deep Learning is by far the most used technique to address Video-based Action Recognition problem. The common issue for these methods is the well-known dependency from training data. Methods are effective when training and test data are extracted from the same distribution. However, in real situations, this is not always the case. When test data has a different distribution than training one, methods result in considerable drop in performances. A solution to this issue is the so-called Domain Adaptation technique, whose goal is to construct methods that adapt test data to the original distribution used in training phase in order to perform well on a different but related target domain. Inspired by some existing approaches in the scientific literature, we proposed a modification of a Domain Adaptation architecture, that is more efficient than existing ones, because it improves the temporal dynamics alignment between source and target data. Experiments show this performance improvement on public standard benchmarks for Action Recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, L., Liu, Z., Huang, T.S.: Cross-dataset action detection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1998–2005. IEEE (2010)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  3. Chen, M.H., Kira, Z., AlRegib, G., Yoo, J., Chen, R., Zheng, J.: Temporal attentive alignment for large-scale video domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6321–6330 (2019)

    Google Scholar 

  4. Davar, N.F., de Campos, T., Windridge, D., Kittler, J., Christmas, W.: Domain adaptation in the context of sport video action recognition. In: Domain Adaptation Workshop, in conjunction with NIPS. University of Surrey (2011)

    Google Scholar 

  5. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  6. Jamal, A., Namboodiri, V.P., Deodhare, D., Venkatesh, K.: Deep domain adaptation in action space. In: BMVC, vol. 2–3, p. 5 (2018)

    Google Scholar 

  7. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  8. Kong, Y., Ding, Z., Li, J., Fu, Y.: Deeply learned view-invariant features for cross-view action recognition. IEEE Trans. Image Process. 26(6), 3028–3037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kong, Y., Fu, Y.: Human action recognition and prediction: a survey. arXiv preprint arXiv:1806.11230 (2018)

  10. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  11. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7083–7093 (2019)

    Google Scholar 

  12. Liu, M., Liu, H., Chen, C.: Enhanced skeleton visualization for view invariant human action recognition. Pattern Recogn. 68, 346–362 (2017)

    Article  Google Scholar 

  13. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  14. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  15. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217. PMLR (2017)

    Google Scholar 

  16. Luvizon, D.C., Picard, D., Tabia, H.: 2d/3d pose estimation and action recognition using multitask deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5137–5146 (2018)

    Google Scholar 

  17. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5715–5725 (2017)

    Google Scholar 

  18. Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 392–405. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_29

    Chapter  Google Scholar 

  19. de Oliveira Silva, V., de Barros Vidal, F., Romariz, A.R.S.: Human action recognition based on a two-stream convolutional network classifier. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 774–778. IEEE (2017)

    Google Scholar 

  20. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8050–8058 (2019)

    Google Scholar 

  21. Shu, N., Tang, Q., Liu, H.: A bio-inspired approach modeling spiking neural networks of visual cortex for human action recognition. In: 2014 international joint conference on neural networks (IJCNN), pp. 3450–3457. IEEE (2014)

    Google Scholar 

  22. Sigurdsson, G.A., Gupta, A., Schmid, C., Farhadi, A., Alahari, K.: Actor and observer: Joint modeling of first and third-person videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7396–7404 (2018)

    Google Scholar 

  23. Soomro, K., Zamir, A.R., Shah, M.: A dataset of 101 human action classes from videos in the wild. Center Res. Comput. Vision 2(11), 1–7 (2012)

    Google Scholar 

  24. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4305–4314 (2015)

    Google Scholar 

  25. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  26. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. (TIST) 11(5), 1–46 (2020)

    Article  Google Scholar 

  27. Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 492–497. IEEE (2009)

    Google Scholar 

  28. Zhang, H.B., et al.: A comprehensive survey of vision-based human action recognition methods. Sensors 19(5), 1005 (2019)

    Article  Google Scholar 

  29. Zhao, Y., Xiong, Y., Lin, D.: Trajectory convolution for action recognition. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatello Conte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conte, D., Fioretti, G.G., Sansone, C. (2022). On the Importance of Temporal Features in Domain Adaptation Methods for Action Recognition. In: Krzyzak, A., Suen, C.Y., Torsello, A., Nobile, N. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2022. Lecture Notes in Computer Science, vol 13813. Springer, Cham. https://doi.org/10.1007/978-3-031-23028-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23028-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23027-1

  • Online ISBN: 978-3-031-23028-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics