Skip to main content

YOLO YOSO: Fast and Simple Encryption and Secret Sharing in the YOSO Model

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Abstract

Achieving adaptive (or proactive) security in cryptographic protocols is notoriously difficult due to the adversary’s power to dynamically corrupt parties as the execution progresses. Inspired by the work of Benhamouda et al. in TCC 2020, Gentry et al. in CRYPTO 2021 introduced the YOSO (You Only Speak Once) model for constructing adaptively (or proactively) secure protocols in massively distributed settings (e.g. blockchains). In this model, instead of having all parties execute an entire protocol, smaller anonymous committees are randomly chosen to execute each individual round of the protocol. After playing their role, parties encrypt protocol messages towards the next anonymous committee and erase their internal state before publishing their ciphertexts. However, a big challenge remains in realizing YOSO protocols: efficiently encrypting messages towards anonymous parties selected at random without learning their identities, while proving the encrypted messages are valid with respect to the protocol. In particular, the protocols of Benhamouda et al. and of Gentry et al. require showing ciphertexts contain valid shares of secret states. We propose concretely efficient methods for encrypting a protocol’s secret state towards a random anonymous committee. We start by proposing a very simple and efficient scheme for encrypting messages towards randomly and anonymously selected parties. We then show constructions of publicly verifiable secret (re-)sharing (PVSS) schemes with concretely efficient proofs of (re-)share validity that can be generically instantiated from encryption schemes with certain linear homomorphic properties. In addition, we introduce a new PVSS with proof of sharing consisting of just two field elements, which as far as we know is the first achieving this, and may be of independent interest. Finally, we show that our PVSS schemes can be efficiently realized from our encryption scheme.

I. Cascudo—Supported by the Spanish Government under the project SecuRing (ref. PID2019-110873RJ-I00/MCIN/AEI/10.13039/501100011033), by the Madrid Government as part of the program S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of the European Union, and by a research grant from Nomadic Labs and the Tezos Foundation.

B. David—Supported by the Concordium Foundation and by the Independent Research Fund Denmark (IRFD) grants number 9040-00399B (TrA2C), 9131-00075B (PUMA) and 0165-00079B.

L. Garms—Supported by a research grant from Nomadic Labs and the Tezos Foundation.

A. Konring—Supported by the IRFD grant number 9040-00399B (TrA2C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This extends to direct products of groups of order p, i.e. \(\mathcal {W}=\mathbb {G}_1\times \dots \times \mathbb {G}_m\), \(\mathcal {X}=\mathbb {G}_1'\times \dots \times \mathbb {G}'_n\) and \(f=(f_1,\dots ,f_m):\mathcal {W}\rightarrow \mathcal {X}\) where \(f_i:\mathbb {G}_i\rightarrow \mathcal {X}\) are all group homomorphisms.

  2. 2.

    Specifically from the fact that the dual of a Reed-Solomon code is a generalized Reed-Solomon code of a certain form.

References

  1. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_10

    Chapter  Google Scholar 

  2. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes with fast or delayed recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 87–102. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0_8

    Chapter  Google Scholar 

  3. Boyle, E., Klein, S., Rosen, A., Segev, G.: Securing Abe’s mix-net against malicious verifiers via witness indistinguishability. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 274–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_15

    Chapter  Google Scholar 

  4. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    Chapter  Google Scholar 

  5. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryption to the future: a paradigm for sending secret messages to future (anonymous) committees. Cryptology ePrint Archive, Report 2021/1423 (2021). https://eprint.iacr.org/2021/1423

  6. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_27

    Chapter  Google Scholar 

  7. Cascudo, I., David, B.: ALBATROSS: publicly AttestabLe BATched randomness based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_11

    Chapter  Google Scholar 

  8. Cascudo, I., David, B., Garms, L., Konring, A.: YOLO YOSO: fast and simple encryption and secret sharing in the YOSO model. Cryptology ePrint, Report 2022/242 (2022). https://eprint.iacr.org/2022/242

  9. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_5

    Chapter  Google Scholar 

  10. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3

    Chapter  Google Scholar 

  11. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054115

    Chapter  Google Scholar 

  12. Gentry, C., et al.: YOSO: you only speak once - secure MPC with stateless ephemeral roles. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_3

    Chapter  Google Scholar 

  13. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly verifiable secret sharing with thousands of parties. Cryptology ePrint Archive, Report 2021/1397 (2021). https://eprint.iacr.org/2021/1397

  14. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index PIR and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 32–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_2

    Chapter  Google Scholar 

  15. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 529–561. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_18

    Chapter  Google Scholar 

  16. Heidarvand, S., Villar, J.L.: Public verifiability from pairings in secret sharing schemes. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 294–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_19

    Chapter  MATH  Google Scholar 

  17. Kolby, S., Ravi, D., Yakoubov, S.: Towards efficient YOSO MPC without setup. Cryptology ePrint Archive, Report 2022/187 (2022). https://eprint.iacr.org/2022/187

  18. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28

    Chapter  Google Scholar 

  19. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  20. Ruiz, A., Villar, J.L.: Publicly verifiable secret sharing from Paillier’s cryptosystem. In: Western European Workshop on Research in Cryptology 2005 (2005)

    Google Scholar 

  21. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_10

    Chapter  Google Scholar 

  22. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Cascudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cascudo, I., David, B., Garms, L., Konring, A. (2022). YOLO YOSO: Fast and Simple Encryption and Secret Sharing in the YOSO Model. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22963-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22962-6

  • Online ISBN: 978-3-031-22963-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics