Skip to main content

Linear Complexity of Generalized Cyclotomic Sequences with Period \(p^{n}q^{m}\)

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2022)

Abstract

Linear complexity is a very important merit factor for measuring the unpredictability of pseudo-random sequences for applications. The higher the linear complexity, the better the unpredictability of a sequence. In this paper, we continue the investigation of generalized cyclotomic sequences constructed by new generalized cyclotomy presented by Zeng et al. In detail, we consider the new generalized cyclotomic sequence with period \(p^nq^m\) where pq are odd distinct primes and nm are natural numbers. It is shown that these sequences have high linear complexity. Finally, we also give some examples to illustrate the correctness of our results.

V. Edemskiy was supported by Russian Science Foundation according to the research project No. 22-21-00516, https://rscf.ru/en/project/22-21-00516/. C. Wu was partially supported by the Projects of International Cooperation and Exchange NSFC-RFBR No. 61911530130, by the Natural Science Foundation of Fujian Province No. 2020J01905.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The order of 2 modulo p is the least positive integer T such that \(2^T\equiv 1\pmod {p}\).

References

  1. Golomb, S.W.: Shift Register Sequences. Holden-Day, San Francisco (1967)

    MATH  Google Scholar 

  2. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Addison-Wesley (1983)

    Google Scholar 

  3. Ding, C., Helleseth, T.: New generalized cyclotomy and its applications. Finite Fields Their Appl. 4(2), 140–166 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Whiteman, A.L.: A family of difference sets. Illinois J. Math. 6, 107–121 (1962)

    Google Scholar 

  5. Ding, C., Helleseth, T.: Generalized cyclotomic codes of length \(p_1^{e_1}\cdots p_t^{e_t}\). IEEE Trans. Inf. Theory 45(2), 467–474 (1999)

    MATH  Google Scholar 

  6. Fan, C., Ge, G.: A unified approach to Whiteman’s and Ding-Helleseth’s generalized cyclotomy over residue class rings. IEEE Trans. Inf. Theory 60(2), 1326–1336 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, X., Chen, Z.: A generalization of the Hall’s sextic residue sequences. Inf. Sci. 222, 784–794 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yan, T., Li, S., Xiao, G.: On the linear complexity of generalized cyclotomic sequences with the period \(p^m\). Appl. Math. Lett. 21(2), 187–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Chen, Z., Liu, H.: A family of pseudorandom binary sequences derived from generalized cyclotomic classes modulo \(p^{m+1}q^{n+1}\). Int. J. Netw. Secur. 22(4), 610–620 (2020)

    Google Scholar 

  10. Hu, L., Yue, Q., Wang, M.H.: The linear complexity of Whiteman’s generalized cyclotomic sequences of period \(p^{m+1}q^{n+1}\). IEEE Trans. Inf. Theory 58(8), 5533–5543 (2012)

    Article  Google Scholar 

  11. Kim, Y.J., Song, H.Y.: Linear complexity of prime \(n\)-square sequences. In: 2008 IEEE International Symposium on Information Theory, pp. 2405–2408 (2008)

    Google Scholar 

  12. Ke, P., Zhang, J., Zhang, S.: On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length \(2p^m\). Des. Codes Cryptogr. 67(3), 325–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zeng, X., Cai, H., Tang, X., Yang, Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory 59(5), 3237–3248 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu, S., Cao, X., Mi, J., Tang, C.: More cyclotomic constructions of optimal frequency-hopping sequences. Adv. Math. Commun. 13(3), 373–391 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xiao, Z., Zeng, X., Li, C., Helleseth, T.: New generalized cyclotomic binary sequences of period \(p^2\). Des. Codes Cryptogr. 86(7), 1483–1497 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Edemskiy, V., Li, C., Zeng, X., Helleseth, T.: The linear complexity of generalized cyclotomic binary sequences of period \(p^n\). Des. Codes Cryptogr. 87(5), 1183–1197 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ye, Z., Ke, P., Wu, C.: A further study of the linear complexity of new binary cyclotomic sequence of length \(p^n\). Appl. Algebra Eng. Commun. Comput. 30(3), 217–231 (2019)

    Article  MATH  Google Scholar 

  18. Ouyang, Y., Xie, X.: Linear complexity of generalized cyclotomic sequences of period \(2p^m\). Des. Codes Cryptogr. 87(5), 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Edemskiy, V., Wu, C.: On the linear complexity of binary sequences derived from generalized cyclotomic classes modulo \(2^np^m\). WSEAS Trans. Math. 18, 197–202 (2019)

    Google Scholar 

  20. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics. Springer, New York (1990). https://doi.org/10.1007/978-1-4757-2103-4

  21. Cusick, T., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, North-Holland mathematical library (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenhuang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Edemskiy, V., Wu, C. (2023). Linear Complexity of Generalized Cyclotomic Sequences with Period \(p^{n}q^{m}\). In: Mesnager, S., Zhou, Z. (eds) Arithmetic of Finite Fields. WAIFI 2022. Lecture Notes in Computer Science, vol 13638. Springer, Cham. https://doi.org/10.1007/978-3-031-22944-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22944-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22943-5

  • Online ISBN: 978-3-031-22944-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics