Skip to main content

Large-Scale Phenotyping and Genotyping: State of the Art and Emerging Challenges

  • Chapter
  • First Online:
Smart Livestock Nutrition

Part of the book series: Smart Animal Production ((SMANPR,volume 1))

  • 389 Accesses

Abstract

The genome and phenome are both forms of big data in that they can be characterised by volume, variety, velocity, value, veracity and variability. A direct relationship exists between the phenotype and the genotype; the proportion of the variability in the phenotype due to differences in the genotype of a (sample) population is termed heritability. Phenomics in livestock generally relate to (a) animal identification, (b) measurements of performance (either output or inputs) and (c) measures of the prevailing environmental conditions. The use of genomics in livestock production includes: (1) genomic predictions, (2) parentage assignment, (3) animal/product traceability, (4) monitoring of major genes and congenital defects including karyotype disorders, (5) estimating coancestry or inbreeding, (6) quantifying breed composition and, importantly (7) facilitating more precise mating and management (e.g. nutrition) decisions. Facilitated by developments in agri-tech, such information will enable the development of tailored genotype-specific nutritional and management regimes. Such a strategy is not at all novel and is the basis for the diversity of production systems for generations; genotype in such situations was, however, synonymous only with breed. Genomics and phenomics will simply improve the granularity of differentiation from being among breeds to being within breeds. Challenges include (a) the return-on-investment, especially for phenomics, although from a breeding perspective, the cost of phenotyping is incurred by few but realised by many, (b) how to distil the masses of data to support decisions by diagnosing and prescribing management and nutritional strategies, and (c) data ownership and use. As more data accumulates on both the genotypes and phenotypes of individuals, the ability to estimate the genetic potential of individual animals more accurately will improve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). The structure and function of DNA. In Molecular biology of the cell (4th ed.). Garland Science.

    Google Scholar 

  • Alipour, M. J., Jalanka, J., Pessa-Morikawa, T., Kokkonen, T., Satokari, R., Hynönen, U., Iivanainen, A., & Niku, M. (2018). The composition of the perinatal intestinal microbiota in cattle. Scientific Reports, 8(1), 10437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacci, G. (2015). Raw sequence data and quality control. Methods in Molecular Biology, 1231, 137–149.

    Article  CAS  PubMed  Google Scholar 

  • Beaumont, M., Goodrich, J. K., Jackson, M. A., Yet, I., Davenport, E. R., Vieira-Silva, S., Debelius, J., Pallister, T., Mangino, M., & Raes, J. (2016). Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology, 17(1), 189. https://doi.org/10.1186/s13059-016-1052-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry, D. P. (2015). Breeding the dairy cow of the future: What do we need? Animal Production Science, 55, 823–837.

    Article  Google Scholar 

  • Berry, D. P. (2019). Genomic information in livestock has multiple uses in precision breeding and management. Livestock, 24, 30–33.

    Article  Google Scholar 

  • Berry, D. P. (2021). Beef-on-dairy—The generation of crossbred beef × dairy cattle. Journal of Dairy Science, 104, 3789–3819.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. P., & Kearney, J. F. (2011). Imputation of genotypes from low-to high-density genotyping platforms and implications for genomic selection. Animal, 5, 1162–1169.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. P., & Ring, S. C. (2020). Observed progeny performance validates the benefit of mating genetically elite beef sires to dairy females. Journal of Dairy Science, 103, 2523–2533.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. P., Buckley, F., Dillon, P. G., Evans, R. D., & Veerkamp, R. F. (2004). Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows. Irish Journal of Agricultural and Food Research, 43, 161–176.

    Google Scholar 

  • Berry, D. P., Meade, K., Mullen, M. P., Butler, S., Diskin, M. G., Morris, D. G., & Creevey, C. J. (2011). The integration of omic disciplines and systems biology in cattle breeding. Animal, 5, 493–505.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. P., Coffey, M. P., Pryce, J. E., de Haas, Y., Lovendahl, P., Krattenmacher, N., Crowley, J. J., Zang, Z., Spurlock, D., Weigel, K., Macdonald, K., & Veerkamp, R. F. (2014). International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources. Journal of Dairy Science, 97, 3894–3905.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. P., O’Brien, A., Wall, E., McDermott, K., Randles, S., Flynn, P., Park, S., Grose, J., Weld, R., & McHugh, N. (2016). Inter-and intra-reproducibility of genotypes from sheep technical replicates on Illumina and Affymetrix platforms. Genetics Selection Evolution, 48, 86.

    Article  Google Scholar 

  • Berry, D. P., Conroy, S., Pabiou, T., & Cromie, A. R. (2017a). Animal breeding strategies can improve meat quality attributes within entire populations. Meat Science, 132, 6–18.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. P., Wolfe, A., O’Donovan, J., Byrne, N., Sayers, R. G., Dodds, K. G., McEwan, J. C., O’Connor, R. E., McClure, M., & Purfield, D. C. (2017b). Characterization of an X-chromosomal non-mosaic monosomy (59, X0) dairy heifer detected using routinely available single nucleotide polymorphism genotype data. Journal of Animal Science, 2017(95), 1042–1049.

    Google Scholar 

  • Berry, D. P., O’Brien, A., O’Donovan, J., McHugh, N., Wall, E., Randles, S., McDermott, K., O’Connor, R. E., Patil, M. A., Ho, J., Kennedy, A., Byrne, N., & Purfield, D. C. (2018). Aneuploidy in dizygotic twin sheep detected using genome-wide single nucleotide polymorphism data from two commonly used commercial vendors. Animal, 12, 2462–2469.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. P., McHugh, N., Wall, E., McDermott, K., & O’Brien, A. C. (2019a). Low-density genotype panel for both parentage verification and discovery in a multi-breed sheep population. Irish Journal of Agricultural and Food Research, 58, 1–12.

    Article  CAS  Google Scholar 

  • Berry, D. P., Amer, P. R., Evans, R. D., Byrne, T., Cromie, A. R., & Hely, F. (2019b). A breeding index to rank beef bulls for use on dairy females to maximize profit. Journal of Dairy Science, 102, 10056–10072.

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. P., Dunne, F. L., McHugh, N., McParland, S., O’Brien, A. C., & Twomey, A. J. (2021a). Ruminant breeding with a particular focus on past, present and future Irish endeavours. Irish J. Agric. (In Press).

    Google Scholar 

  • Berry, D. P., Dunne, F. L., Evans, R. D., McDermott, K., & O’Brien, A. C. (2021b). Concordance rate in cattle and sheep between genotypes differing in Illumina GenCall quality score. Animal Genetics, 52, 208–213.

    Article  CAS  PubMed  Google Scholar 

  • Bilder, R. M. (2008). Phenomics: Building scaffolds for biological hypotheses in the post-genomic era. Biological Psychiatry, 63, 439–440. [PubMed: 18267152].

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilder, R. M., Sabb, F. W., Cannon, T. D., London, E. D., Jentsch, J. D., Stott Parker, D., Poldrack, R. A., Evans, C., & Freimer, N. B. (2009). Phenomics: The systematic study of phenotypes on a genome-wide scale. Neuroscience, 164, 30–42.

    Article  CAS  PubMed  Google Scholar 

  • Blard, G., Zhang, Z., Coppieters, W., & Georges, M. (2012). Identifying cows with subclinical mastitis by bulk single nucleotide polymorphism genotyping of tank milk. Journal of Dairy Science, 95, 4109–4113.

    Article  CAS  PubMed  Google Scholar 

  • Boichard, D., Chung, H., Dassonneville, R., David, X., Eggen, A., Fritz, S., Gietzen, K. J., Hayes, B., Lawley, C. T., Sonstegard, T. S., Van Tassell, C. P., VanRaden, P. M., Viaud-Martinez, K. A., & Wiggans, G. R. (2012). Design of a bovine low-density SNP array optimized for imputation. PLoS One, 7(3), e34130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolormaa, S., Ruvinsky, A., Walkden-Brown, S. W., & van der Werf, J. H. J. (2008). DNA-based parentage verification in two Australian goat herds. Small Ruminant Research, 80, 95–100.

    Article  Google Scholar 

  • Borderas, T. F., Rushen, J., von Keyserlingk, M. A. G., & de Passillé, A. M. B. (2009). Automated measurement of changes in feeding behavior of milk-fed calves associated with illness. Journal of Dairy Science, 92, 4549–4554.

    Article  CAS  PubMed  Google Scholar 

  • Bouwman, A. C., Daetwyler, H. D., Chamberlain, A. J., Ponce, C. H., Sargolzaei, M., Schenkel, F. S., Sahana, G., Govignon-Gion, R., Boitard, S., Dolezal, M., Pausch, H., Brøndum, R. F., Bowman, P. J., Thomsen, B., Guldbrandtsen, B., Lund, M. S., Servin, B., Garrick, D. J., Reecy, J., Vilkki, J., Bagnato, A., Wang, M., Hoff, J. L., Schnabel, R. D., Taylor, J. F., Vinkhuyzen, A. A. E., Panitz, F., Bendixen, C., Holm, L. E., Gredler, B., Hozé, C., Boussaha, M., Sanchez, M. P., Rocha, D., Capitan, A., Tribout, T., Barbat, A., Croiseau, P., Drögemüller, C., Jagannathan, C. C., Vander Jagt, C., Crowley, J. J., Bieber, A., Purfield, D. C., Berry, D. P., Emmerling, R., Götz, K. U., Frischknecht, M., Russ, I., Sölkner, J., Van Tassell, C. P., Fries, R., Stothard, P., Veerkamp, R. F., Boichard, D., Goddard, M. E., & Hayes, B. J. (2018). Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nature Genetics, 50, 362–367.

    Article  CAS  PubMed  Google Scholar 

  • Bresolin, T., & Dórea, J. R. R. (2020). Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems. Frontiers in Genetics, 11, 923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camarinha-Silva, A., Maushammer, M., Wellmann, R., Vital, M., Preuss, S., & Bennewitz, J. (2017). Host genome influence on gut microbial composition and microbial prediction of complex traits in pigs. Genetics, 206(3), 1637–1644. https://doi.org/10.1534/genetics.117.200782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron, N. (1997). Selection indices and prediction of genetic merit in animal breeding. CABI.

    Book  Google Scholar 

  • Chizzotti, M. L., Machado, F. S., Valente, E. E. L., Pereira, L. G. R., Campos, M. M., Tomich, T. R., Coelho, S. G., & Ribas, M. N. (2011). Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle. Journal of Dairy Science, 98, 3438–3442.

    Article  Google Scholar 

  • Clemmons, B. A., Reese, S. T., Dantas, F. G., Franco, G. A., Smith, T. P. L., Adeyosoye, O. I., Pohler, K. G., & Myer, P. R. (2017). Vaginal and uterine bacterial communities in postpartum lactating cows. Frontiers in Microbiology, 8, 1047. https://doi.org/10.3389/fmicb.2017.01047

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole, J. B., & VanRaden, P. M. (2018). Symposium review: Possibilities in an age of genomics: The future of selection indices. Journal of Dairy Science, 101, 3686–3701.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J. B., Newman, S., Foertter, F., Aguilar, I., & Coffey, M. (2011). Really big data: Processing and analysis of very large datasets. Journal of Animal Science, 90, 723–733.

    Article  PubMed  Google Scholar 

  • Crowley, J. J., McGee, M., Kenny, D. A., Crews, D. H., Evans, R. D., & Berry, D. P. (2010). Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. Journal of Animal Science, 88, 885–894.

    Article  CAS  PubMed  Google Scholar 

  • De Marchi, M., Toffanin, V., Cassandro, M., & Penasa, M. (2014). Invited review: Mid-infrared spectroscopy as a phenotyping tool for milk traits. Journal of Dairy Science, 97, 1171–1186.

    Article  PubMed  Google Scholar 

  • Dehareng, F., Delfosse, C., Froidmont, E., Soyeurt, H., Martin, C., Gengler, N., Vanlierde, A., & Dardenne, P. (2012). Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal, 6, 1694–1701.

    Article  CAS  PubMed  Google Scholar 

  • Dekkers, J. C. M. (2004). Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science, 82, E313–E328.

    PubMed  Google Scholar 

  • Dillon, P. G., Berry, D. P., Evans, R. D., Buckley, F., & Horan, B. (2006). Consequences of genetic selection for increased milk production in European seasonal pasture based systems of milk production. Livestock Production Science, 99, 141–158.

    Article  Google Scholar 

  • Duchesne, A., Vaiman, A., Frah, M., Floriot, S., Legoueix-Rodriguez, S., Desmazières, A., Fritz, S., Beauvallet, C., Albaric, O., Venot, E., Bertaud, M., Saintilan, R., Guatteo, R., Esquerré, D., Branchu, J., Fleming, A., Brice, A., Darios, F., Vilotte, J. L., Stevanin, G., Boichard, D., & El Hachimi, K. H. (2018 August 1). Progressive ataxia of Charolais cattle highlights a role of KIF1C in sustainable myelination. PLoS Genetics, 14(8), e1007550. https://doi.org/10.1371/journal.pgen.1007550. PMID: 30067756; PMCID: PMC6089448.

  • Dunne, F. L., McParland, S., Kelleher, M. M., Walsh, S. W., & Berry, D. P. (2019). How herd best linear unbiased estimates affect the progress achievable from gains in additive and nonadditive genetic merit. Journal of Dairy Science, 102, 5295–5304.

    Article  CAS  PubMed  Google Scholar 

  • Dunne, F. L., Berry, D. P., Kelleher, M. M., Evans, R. D., Walsh, S. W., & Amer, P. R. (2020). An index framework founded on the future profit potential of female beef cattle to aid the identification of candidates for culling. Journal of Animal Science, 98, skaa334.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunne, F. L., Evans, R. D., Kelleher, M. M., Walsh, S. W., & Berry, D. P. (2021). Formulation of a decision support tool incorporating both genetic and non-genetic effects to rank young growing cattle on expected market value. Animal, 15, 100077.

    Article  CAS  PubMed  Google Scholar 

  • Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Zepeda, A., Vera-Ponce de León, A., & Sanchez-Flores, A. (2015). The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics. Frontiers in Genetics, 6, 348. https://doi.org/10.3389/fgene.2015.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas, T. J. (2017). Data created by the internet of things: The new gold without ownership. Revista la Propiedad Inmaterial, 23, 5–17.

    Article  Google Scholar 

  • Fernandes, A. F. A., Dóres, J. R. R., & de Rosa, G. J. (2020). Image analysis and computer vision applications in animal sciences: An overview. Frontiers in Veterinary Science, 7, 551269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friggens, N. C., Blanc, F., Berry, D. P., & Puillet, L. (2017). Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management. Animal, 11, 2237–2251.

    Article  CAS  PubMed  Google Scholar 

  • Frizzarin, M., Gormley, I. C., Berry, D. P., Murphy, T. B., Casa, A., Lynch, A., & McParland, S. (2021). Predicting cow milk quality traits from routinely available milk spectra using statistical machine learning methods. Journal of Dairy Science, 104, 7438–7447.

    Article  CAS  PubMed  Google Scholar 

  • Gärnter, A., & Brimsted, K. (2017). Let’s talk about data ownership. European Intellectual Property Review, 39, 461–466.

    Google Scholar 

  • Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A. T., Sargeant, L. S., Sorensen, A., Steele, M., Zhao, X., Womack, J. E., & Hoeschele, I. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics, 139, 907–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddard, M. E., & Whitelaw, E. (2014). The use of epigenetic phenomena for the improvement of sheep and cattle. Frontiers in Genetics, 21.

    Google Scholar 

  • González-Recio, O., Rosa, G. J. M., & Gianola, D. (2014). Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits. Livestock Science, 166, 217–231.

    Article  Google Scholar 

  • Greenwood, P. L., Bishop-Hurley, G. J., González, L. A., & Ingham, A. B. (2016). Development and application of a livestock phenomics platform to enhance productivity and efficiency at pasture. Animal Production Science, 2016(56), 1299–1311.

    Article  Google Scholar 

  • Grelet, C., Froidmont, E., Foldager, L., Salavati, M., Hostens, M., Ferris, C. P., Ingvartsen, K. L., Crowe, M. A., Sorensen, M. T., Fernandez Pierna, J. A., Vanlierde, A., Gengler, N., Consortium, G. E., & Dehareng, F. (2020). Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation. Journal of Dairy Science, 103, 4435–4445.

    Article  CAS  PubMed  Google Scholar 

  • Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Cambisano, N., Mni, M., Reid, S., Spelman, R., Georges, M., & Snell, R. (2002). Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research, 12, 222–231.

    Article  CAS  PubMed  Google Scholar 

  • GuliÅ„ski, P., SalamoÅ„czyk, E., & MÅ‚ynek, K. (2016). Improving nitrogen use efficiency of dairy cows in relation to urea in milk – A review. Animal Science Papers and Reports, 34(1), 5–24.

    Google Scholar 

  • Haag, S., & Anderl, R. (2018). Digital twin; proof of concept. Manufacturing Letters, 15, 64–66.

    Article  Google Scholar 

  • Halachmi, I., Guarino, M., Bewley, J., & Pastell, M. (2019). Smart animal agriculture: Application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences, 7, 403–425.

    Article  PubMed  Google Scholar 

  • Hocquette, J. F., Meurice, P., Brun, J. P., Jurie, C., Denoyelle, C., Bauchart, D., Renand, G., Nute, G. R., & Picard, B. (2011). The challenge and limitations of combining data: A case study examining the relationship between intramuscular fat content and flavour intensity based on the BIF-BEEF database. Animal Production Science, 51, 975–981. https://doi.org/10.1071/AN10044

    Article  CAS  Google Scholar 

  • Hocquette, J.-F., Capel, C., David, V., Guémené, D., Bidanel, J., Ponsart, C., Gastinel, P.-L., Le Bail, P.-Y., Monget, P., Mormède, P., Barbezant, M., Guillou, F., & Peyraud, J.-L. (2012). Objectives and applications of phenotyping network set-up for livestock. Journal of Animal Science, 83(7), 517–528.

    Article  Google Scholar 

  • Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: The next challenge. Nature Reviews. Genetics, 11, 855–866. https://doi.org/10.1038/nrg2897

    Article  CAS  PubMed  Google Scholar 

  • Howie, J. A., Tolkamp, B. J., Avendano, S., & Kyriazakis, I. (2011). Genetic parameters of feeding behavior traits and their relationships with live performance traits in modern broiler lines. Poultry Science, 90, 1197–1205.

    Article  CAS  PubMed  Google Scholar 

  • Hungate, R. E. (1966). Rumen and its microbes. Academic Press.

    Google Scholar 

  • Jami, E., White, B. A., & Mizrahi, I. (2014). Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One, 9, e85423. https://doi.org/10.1371/journal.pone.0085423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannsen, W. L. (1909). Elemente der Exakten Erblichkeitslehre [The elements of an exact theory of heredity]. Gustav Fischer. https://doi.org/10.5962/bhl.title.1060. Accessed 7 May 2021.

  • Judge, M. M., Kearney, J. F., McClure, M. C., Sleator, R. D., & Berry, D. P. (2016). Evaluation of developed low-denstiy genotype panels for imputation to higher density in independent dairy and beef cattle populations. Journal of Animal Science, 94, 949–962.

    Article  CAS  PubMed  Google Scholar 

  • Judge, M. M., Kelleher, M. M., Kearney, J. F., Sleator, R. D., & Berry, D. P. (2017). Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle. Animal, 11(06), 938–947.

    Article  CAS  PubMed  Google Scholar 

  • Judge, M. M., Conroy, S., Pabiou, T., Cromie, A. R., & Berry, D. P. (2018). Heritability estimates of meat sensory characteristics are a function of the number of panellists and their inter-correlations. Meat Science, 141(2018), 91–93.

    Article  CAS  PubMed  Google Scholar 

  • Kelleher, M. M., Amer, P. R., Shalloo, L., Evans, R. D., Byrne, T. J., Buckley, F., & Berry, D. P. (2015). Development of an index to rank dairy females on expected lifetime profit. Journal of Dairy Science, 98, 4225–4239.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, D. N., Sleator, R. D., Murphy, C. P., Conroy, S. B., Judge, M. M., & Berry, D. P. (2020). Large variability in feeding behavior among crossbred growing cattle. Journal of Animal Science, 98, 1–10.

    Article  Google Scholar 

  • Kenny, D. A., Sleator, R. D., Murphy, C. P., Evans, R. D., & Berry, D. P. (2021). Herd solutions from genetic evaluations can be used as a tool to rescale the expected expression of genetic potential in cattle. Journal of Animal Breeding and Genetics. (in Press).

    Google Scholar 

  • Leroy, G. (2014). Inbreeding depression in livestock species: Review and meta-analysis. Animal Genetics, 45, 618–628.

    Article  CAS  PubMed  Google Scholar 

  • Li, N., Wang, Y., You, C., Ren, J., Chen, W., Zheng, H., & Liu, Z. (2018). Variation in raw milk microbiota throughout 12 months and the impact of weather conditions. Scientific Reports, 8(1), 2371. https://doi.org/10.1038/s41598-018-20862-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahner, M., & Kary, M. (1997). What exactly are genomes, genotypes and phenotypes? And what about phenomes? Journal of Theoretical Biology, 186, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • McClure, M. C., Sonstegard, T. S., Wiggans, G. R., Van Eenennaam, A. L., Weber, K. L., Penedo, C. T., Berry, D. P., Flynn, J., Garcia, J. F., Carmo, A. S., Regitano, L. C. A., Albuquerque, M., Silva, M. V. G. B., Machado, M. A., Coffey, M., Moore, K., Boscher, M.-Y., Genestout, L., Mazza, R., Taylor, J. F., Schnabel, R. D., Simpson, B., Marques, E., McEwan, J. C., Cromie, A. R., Coutinho, L. L., Kuehn, L. A., Keele, J. W., Piper, E. K., Cook, J., Williams, R., Bovine HapMap Consortium, & Van Tassell, C. P. (2013). Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds. Frontiers in Genetics, 4, 176.

    Article  PubMed  PubMed Central  Google Scholar 

  • McParland, S., Kearney, J. F., Rath, M., & Berry, D. P. (2007). Inbreeding trends and pedigree analysis of Irish dairy and beef cattle populations. Journal of Animal Science, 85, 322–331.

    Article  CAS  Google Scholar 

  • McParland, S., Banos, G., Wall, E., Coffey, P., Soyeurt, H., Veerkamp, R. F., & Berry, D. P. (2011). The use of mid-infrared spectrometry to predict body energy status of Holstein cows. Journal of Dairy Science, 94, 3651–3661.

    Article  CAS  PubMed  Google Scholar 

  • McParland, S., Banos, G., McCarthy, B., Lewis, E., Coffey, M., O’Neill, B., O’Donovan, M., Wall, E., & Berry, D. P. (2012). Validation of mid-infrared spectrometry in milk predicting body energy status in Holstein-Friesian cows. Journal of Dairy Science, 95, 7225–7235.

    Article  CAS  PubMed  Google Scholar 

  • McPherron, A. C., & Lee, S.-J. (1997). Double muscling in cattle due to mutations in the myostatin gene. PNAS, 11(94), 12457–12461.

    Article  Google Scholar 

  • Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2016). Genomic selection: A paradigm shift in animal breeding. Animal Frontiers, 6, 6–14.

    Article  Google Scholar 

  • Moen, T., Torgersen, J., Santi, N., Davidson, W. S., Baranski, M., ØdegÃ¥rd, J., Kjøglum, S., Velle, B., Kent, M., Lubieniecki, K. P., Isdal, E., & Lien, S. (2015). Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics, 200, 1313–1326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mrode, R. A. (2014). Linear models for the prediction of animal breeding values. CABI International.

    Book  Google Scholar 

  • Newton, J. E., & Berry, D. P. (2020). On-farm net benefit of genotyping candidate female replacement cattle and sheep. Animal, 14(8), 1565–1575.

    Article  Google Scholar 

  • Nguyen, T. T. T., Bowman, P. J., Haile-Mariam, M., Pryce, J. E., & Hayes, B. J. (2016). Genomic selection for tolerance to heat stress in Australian dairy cattle. Journal of Dairy Science, 99, 2849–2862.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, H. M., Ask, B., & Madsen, P. (2018). Social genetic effects for growth in pigs differ between boars and gilts. Genetics Selection Evolution, 50, 4.

    Article  Google Scholar 

  • Ordovas, J. M., Ferguson, L. R., Shyong Tai, E., & Mathers, J. C. (2018). Personalised nutrition and health. BMJ, 361, bmj.k2173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pabiou, T., Fikse, W. F., Amer, P. R., Cromie, A. R., Nasholm, A., & Berry, D. P. (2012). Genetic relationships between carcass cut weights predicted from video image analysis and other performance traits in cattle. Animal, 6(9), 1389.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Enciso, M., & Steibel, J. P. (2021). Phenomes: The current frontier in animal breeding. Genetics, Selection, Evolution, 53, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratt, V. M., Scott, S. A., Pirmohamed, M., Esquivel, B., Kane, M. S., Kattman, B. L., & Malheiro, A. J. (2012). Codeine therapy and CYP2D6 genotype. Medical genetics summaries [internet]. National Center for Biotechnology Information (US); 2012–2012 Sep 20 [updated 2021 Mar 30].

    Google Scholar 

  • Pryce, J. E., Johnston, J., Hayes, B. J., Sahana, G., Weigel, K. A., McParland, S., Spurlock, D., Krattenmacher, N., Spelman, R. J., Wall, E., & Calus, M. P. L. (2014). Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations. Journal of Dairy Science, 97, 1799–1811.

    Article  CAS  PubMed  Google Scholar 

  • Purfield, D., McClure, M., & Berry, D. P. (2016). Justification for setting the individual animal genotype call rate threshold at eighty-five percent. Journal of Animal Science, 94, 4558–4569.

    Article  CAS  PubMed  Google Scholar 

  • Purfield, D. C., Evans, R. D., & Berry, D. P. (2019). 2019 reaffirmation of known major genes and the identification of novel candidate genes associated with carcass-related metrics based on whole genome sequence within a large multi-breed cattle population. BMC Genomics, 20, 720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafter, P., Purfield, D. C., Berry, D. P., Parnell, A. C., Gormley, I. C., Kearney, J. F., Coffey, M. P., & Carthy, T. R. (2018). Characterization of copy number variants in a large multibreed population of beef and dairy cattle using high-density single nucleotide polymorphism genotype data. Journal of Animal Science, 2018(96), 4112–4124.

    Article  Google Scholar 

  • Rendel, J., & Robertson, A. (1950). Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle. Journal of Genetics, 1950(50), 1–8.

    Article  Google Scholar 

  • Ring, S. C., Twomey, A. J., Byrne, N., Kelleher, M. M., Pabiou, T., Doherty, M. L., & Berry, D. P. (2018). Genetic selection for hoof health traits and cow mobility scores can accelerate the rate of genetic gain in producer scored lameness in dairy cows. Journal of Dairy Science, 101, 10034–10047.

    Article  CAS  PubMed  Google Scholar 

  • Ritenour, E. R. (2020). Hacking and ransomware: Challenges for institutions both large and small. American Journal of Roentgenology, 214, 736–737.

    Article  PubMed  Google Scholar 

  • Roche, J. R., Berry, D. P., Delaby, L., Dillon, P. G., Horan, B., Macdonald, K. A., & Neal, M. (2018). New considerations to refine breeding objectives of dairy cows for increasing robustness and sustainability of grass-based milk production systems. Animal, 12(S2), s350–s362.

    Article  CAS  PubMed  Google Scholar 

  • Rusakovica, J., Kremer, V. D., Plotz, T., Rohlf, P., & Kyriazakis, I. (2017). The genetic basis of novel water utilisation and drinking behaviour traits and their relationship with biological performance in turkeys. Genetics, Selection, Evolution, 49, 72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos, D. J. A., Cole, J. B., LawlorJr, T. J., VanRaden, P. M., Tonhati, H., & Ma, L. (2019). Variance of gametic diversity and its application in selection programs. Journal of Dairy Science, 102, 5279–5294.

    Article  CAS  PubMed  Google Scholar 

  • Sargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1), 478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirmann, K., Weary, D. M., Heuwieser, W., Chapinal, N., Cerri, R. L. A., & von Keyserlingk, M. A. G. (2016). Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. Journal of Dairy Science, 99, 9917–9924.

    Article  CAS  PubMed  Google Scholar 

  • Schlötterer, C. (2004). The evolution of molecular markers – Just a matter of fashion. Nature Reviews Genetics, 5, 63–69.

    Article  PubMed  Google Scholar 

  • Simianer, H. (2016). Genomic and other revolutions—Why some technologies are quickly adopted and others are not. Animal Frontiers, 6, 53–58.

    Article  Google Scholar 

  • Smith, M. J. (2020). Getting value from artificial intelligence in agriculture. Animal Production Science, 2020(60), 46–54.

    Google Scholar 

  • Soulé, E. M. (1967). Phenetics of natural populations. II. Asymmetry and evolution in a lizard. The American Naturalist, 101, 141–160.

    Article  Google Scholar 

  • Steinfeld, H., Gerber, P. J., Wassenaar, T., Castel, V., Rosales, M., & De Haan, C. (2006). Livestock’s long shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Stiles, W. A. V., Rowe, E. C., & Dennis, P. (2018). Nitrogen and phosphorus enrichment effects on CO2 and methane fluxes from an upland ecosystem. Science of the Total Environment, 618, 1199–1209.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, M., & Van Vleck, L. D. (1994). Heritability and repeatability for milk production traits of Japanese Holsteins from an animal model. Journal of Dairy Science, 77(2), 583–588.

    Article  CAS  PubMed  Google Scholar 

  • Torkamani, A., Wineinger, N. E., & Topol, E. J. (September 2018). The personal and clinical utility of polygenic risk scores. Nature reviews. Genetics, 19(9), 581–590.

    CAS  PubMed  Google Scholar 

  • Väli, Ãœ., Brandström, M., Johansson, M., & Ellegren, H. (2008). Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genetics, 9, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRaden, P. M., Olson, K. M., Null, D. J., & Hutchison, J. L. (2011). Harmful recessive effects on fertility detected by absence of homozygous haplotypes. Journal of Dairy Science, 94, 6153–6161.

    Article  CAS  PubMed  Google Scholar 

  • Visscher, P. M., Woolliams, J. A., Smith, D., & Williams, J. L. (2002). Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection. Journal of Dairy Science, 85(9), 2368–2375.

    Article  CAS  PubMed  Google Scholar 

  • Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era: Concepts and mis-conceptions. Nature Reviews. Genetics, 9, 255–266.

    Article  CAS  PubMed  Google Scholar 

  • Vogenberg, F. R., Isaacson Barash, C., & Pursel, M. (2010). Personalized medicine: Part 1: Evolution and development into theranostics. P T., 35(10), 560–576.

    PubMed  PubMed Central  Google Scholar 

  • Wallén, S. E., Prestløkken, E., Meuwissen, T. H. E., McParland, S., & Berry, D. P. (2018). Milk mid-infrared spectral data as a tool to predict feed intake in lactating Norwegian Red dairy cows. Journal of Dairy Science, 101, 6232–6243.

    Article  PubMed  Google Scholar 

  • Weller, J. I., Seroussi, E., & Ron, M. (2006). Estimation of the number of genetic markers required for individual animal identification accounting for genotyping errors. Animal Genetics, 37(4), 387–389.

    Article  CAS  PubMed  Google Scholar 

  • Wientjes, Y. C. J., & Calus, M. P. L. (2017, August). The purebred-crossbred correlation in pigs: A review of theory, estimates, and implications. Journal of Animal Science, 95(8), 3467–3478.

    CAS  PubMed  Google Scholar 

  • World Health Organisation (2002). Genomics and world health: Report of the advisory committee on health research, ,

    Google Scholar 

  • Zhao, S., Jing, W., Samuels, D. C., Sheng, Q., Shyr, Y., & Guo, Y. (2018). Strategies for processing and quality control of Illumina genotyping arrays. Briefings in Bioinformatics, 19, 765–775.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donagh P. Berry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berry, D.P. (2023). Large-Scale Phenotyping and Genotyping: State of the Art and Emerging Challenges. In: Kyriazakis, I. (eds) Smart Livestock Nutrition. Smart Animal Production, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-22584-0_5

Download citation

Publish with us

Policies and ethics