Skip to main content

Evaluation of Feature Engineering Methods for the Prediction of Sheet Metal Properties from Punching Force Curves by an Artificial Neural Network

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 805 Accesses

Abstract

The part quality that can be achieved in forming and stamping processes strongly depends on the properties of the sheet metal material to be processed. However, since these material properties may fluctuate considerably and thus lead to the production of scrap, it is important to monitor such material fluctuations during part production. For this, the ongoing digitization of production processes provides new possibilities for part or quality monitoring. In this context, a novel AI-based method for the direct determination of material parameters from punching force curves measured in production was presented in a past study by the authors. This paper deals with the investigation of three further methods for extracting features from these recorded measuring data. In addition to domain knowledge-based feature engineering, statistical feature extraction (PCA) as well as a derivative-based method are analyzed and compared with each other and with the previously used AI (ANN) regarding their prediction accuracy of sheet metal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lange, K (Hrsg) (1990) Umformtechnik Handbuch für Industrie und Wissenschaft Band 3: Blechbearbeitung. Springer, Berlin

    Google Scholar 

  2. de Souza T, Rolfe BF (2010) Characterising material and process variation effects on springback robustness for a semi-cylindrical sheet metal forming process. Int J Mech Sci Bd. 52(12):1756–1766

    Google Scholar 

  3. Maier SJ (2018) Inline-Qualitätsprüfung im Presswerk durch intelligente Nachfolgewerkzeuge, Technische Universität München, Dissertation

    Google Scholar 

  4. Faaß I (2009) Prozessregelung für die Fertigung von Karosserieteilen in Presswerken, Technische Universität München, Dissertation

    Google Scholar 

  5. Held C, Liewald M, Sindel M (2009) Untersuchungen zum Einfluss werkstofflicher Schwankungen innerhalb eines Coils auf die Umformbarkeit *. In: wt Werkstattstechnik online, vol 99, issue no. 10, pp 732–739

    Google Scholar 

  6. Ružovič M (2004) Die zerstörungsfreie Ermittlung von genauen Zugversuchsdaten mit dem Wirbelstromverfahren, Eidgenössiche Technische Hochschule, Dissertation

    Google Scholar 

  7. Wiesenmayer S, Frey P, Lechner M, Merklein M (2020) Determination of the properties of semi-finished parts in blanking processes. In: IOP conference series: materials science and engineering, vol 967, issue no. 1

    Google Scholar 

  8. Schenek A, Görz M, Liewald M, Riedmüller KR (2022) Data-driven derivation of sheet metal properties gained from punching forces using an artificial neural network. In: Vincze G, Barlat F (Hrsg.) Key engineering materials, vol 926, pp 2174–2182

    Google Scholar 

  9. Hoppe F, Hohmann J, Knoll M, Kubik C, Groche P (2019) Feature-based supervision of shear cutting processes on the basis of force measurements: evaluation of feature engineering and feature extraction. In: Procedia manufacturing, vol 34, Elsevier B.V., pp 847–856

    Google Scholar 

  10. Asahi S, Karadogan C, Tamura S, Hayamizu S, Liewald M (2021) Process data based estimation of tool wear on punching machines using TCN-Autoencoder from raw time-series information. In: IOP conference series: materials science and engineering, vol 1157 issue no 1

    Google Scholar 

  11. Hoffmann H, Neugebauer R, Spur G (Hrsg.) (2012) Handbuch Umformen. Carl Hanser Verlag GmbH Co. KG, München. ISBN 978-3-446-42778-5

    Google Scholar 

  12. Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

  13. Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2018) Hyperband: a novel bandit-based approach to hyperparameter optimization. J Mach Learn Res 18:1–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Görz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Görz, M., Schenek, A., Liewald, M., Riedmüller, K.R. (2023). Evaluation of Feature Engineering Methods for the Prediction of Sheet Metal Properties from Punching Force Curves by an Artificial Neural Network. In: Zhang, M., et al. Characterization of Minerals, Metals, and Materials 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22576-5_8

Download citation

Publish with us

Policies and ethics