Skip to main content

The Role of Through-Thickness Variation of Texture and Grain Size on Bending Ductility of Al–Mg–Si Profiles

  • Conference paper
  • First Online:
Light Metals 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Requiring a high strength and concurrently a high ductility in materials is generally a demand for opposing properties in dislocation slip deforming materials, such as Al–Mg–Si wrought alloys. However, these are essential mechanical properties for safety parts in the mobility sector. While the strength of Al–Mg–Si wrought alloys is mainly governed by the state and density of the secondary precipitates, the deformation behavior and ductility are affected by both precipitates and crystallographic texture. The deformation during extrusion leads to the formation of characteristic textures in the bulk, which are distinct to a plane-strain deformation, and a peripheral coarse grain (PCG) layer beneath the surface. This PCG layer can have a detrimental effect on the bending ductility, which assesses the crashworthiness. However, an appropriate texture in the bulk can counteract the detrimental effect of PCG and increases the bending ductility at high strengths. Subsequently, based on EBSD investigations of bending deformed microstructures, a way to enhance bending deformation capability in Al–Mg–Si profiles is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parson N, Fourmann J, Beland J-F (2017) Aluminum Extrusions for Automotive Crash Applications. SAE Tech Pap 01–16

    Google Scholar 

  2. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822

    Article  CAS  Google Scholar 

  3. Ryen Ø, Holmedal B, Marthinsen K, Furu T (2015) Precipitation, strength and work hardening of age hardened aluminium alloys. IOP Conf Ser Mater Sci Eng 89:012013

    Article  Google Scholar 

  4. Remøe MS, Marthinsen K, Westermann I, Pedersen K, Røyset J, Marioara C (2017) The effect of alloying elements on the ductility of Al-Mg-Si alloys. Mater Sci Eng A 693:60–72

    Article  Google Scholar 

  5. Österreicher JA, Schiffl A, Falkinger G, Bourret GR (2016) Microstructure and mechanical properties of high strength Al—Mg—Si—Cu profiles for safety parts. IOP Conf Ser Mater Sci Eng 119:012028

    Article  Google Scholar 

  6. Lassance D, Fabregue D, Delannay F, Pardoen T (2007) Micromechanics of room and high temperature fracture in 6xxx Al alloys. Prog Mater Sci 52:62–129

    Article  CAS  Google Scholar 

  7. Kuijpers NCW, Vermolen FJ, Vuik C, Koenis PTG, Nilsen KE, van der Zwaag S (2005) The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements. Mater Sci Eng A 394:9–19

    Article  Google Scholar 

  8. Lodgaard L, Ryum N (2000) Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng A 283:144–152

    Article  Google Scholar 

  9. Sundman B, Ohnuma I, Dupin N, Kattner UR, Fries SG (2009) An assessment of the entire Al–Fe system including D03 ordering. Acta Mater 57:2896–2908

    Article  CAS  Google Scholar 

  10. Shi C, Chen X-G (2015) Effects of Zr and V Micro-Alloying on Activation Energy during Hot Deformation of 7150 Aluminum Alloys. In: Hyland M (ed) Light Metals 2015. Springer International Publishing, Cham, pp 163–167

    Chapter  Google Scholar 

  11. Hirsch J, Lücke K (1988) Overview no. 76 - I. Acta Metall 36:2863–2882

    Article  CAS  Google Scholar 

  12. Daaland O, Nes E (1996) Origin of cube texture during hot rolling of commercial Al-Mn-Mg alloys. Acta Mater 44:1389–1411

    Article  CAS  Google Scholar 

  13. Montheillet F, Cohen M, Jonas JJ (1984) Axial stresses and texture development during the torsion testing of Al, Cu and α-Fe. Acta Metall 32:2077–2089

    Article  CAS  Google Scholar 

  14. Grasserbauer J, Weißensteiner I, Falkinger G, Mitsche S, Uggowitzer PJ, Pogatscher S (2020) Evolution of Microstructure and Texture in Laboratory- and Industrial-Scaled Production of Automotive Al-Sheets. Materials 13:469

    Article  CAS  Google Scholar 

  15. Molodov DA, Shvindlerman LS, Gottstein G (2003) Impact of grain boundary character on grain boundary kinetics. Int J Mater Res 94:1117–1126

    Article  CAS  Google Scholar 

  16. Frodal BH, Morin D, Børvik T, Hopperstad OS (2020) On the effect of plastic anisotropy, strength and work hardening on the tensile ductility of aluminium alloys. Int J Solids Struct 188–189:118–132

    Article  Google Scholar 

  17. Henn P, Liewald M, Sindel M (2018) Investigation on crashworthiness characterisation of 6xxx-series aluminium sheet alloys based on local ductility criteria and edge compression tests. IOP Conf Ser Mater Sci Eng 418:012125

    Article  Google Scholar 

  18. VDA 238–100 (2020) Plate bending test for metallic materials

    Google Scholar 

  19. De Graef M (2020) A dictionary indexing approach for EBSD. IOP Conf Ser Mater Sci Eng 891:012009

    Article  Google Scholar 

  20. Bachmann F, Hielscher R, Schaeben H (2010) Texture Analysis with MTEX – Free and Open Source Software Toolbox. Solid State Phenom 160:63–68

    Article  CAS  Google Scholar 

  21. Jin SB, Zhang K, Bjørge R, Tao NR, Marthinsen K, Lu K, Li YJ (2015) Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy. Appl Phys Lett 107:091901

    Article  Google Scholar 

  22. Li BQ, Sui ML, Li B, Ma E, Mao SX (2009) Reversible Twinning in Pure Aluminum. Phys Rev Lett 102:205504

    Article  CAS  Google Scholar 

  23. Hai S, Tadmor EB (2003) Deformation twinning at aluminum crack tips. Acta Mater 51:117–131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Goik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goik, P., Schiffl, A., Höppel, H.W., Göken, M. (2023). The Role of Through-Thickness Variation of Texture and Grain Size on Bending Ductility of Al–Mg–Si Profiles. In: Broek, S. (eds) Light Metals 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22532-1_77

Download citation

Publish with us

Policies and ethics