Skip to main content

Effect of Cooling Rate on W-Phase Formation in Al-Cu-Sc Alloys

  • Conference paper
  • First Online:
Light Metals 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Aluminum-copper-scandium alloys show significant potential for high-strength applications; however, the formation of the detrimental W-phase (nominally Al8Cu4Sc) has prevented commercial adoption. There is not a strong consensus as to what conditions lead to the formation of W-phase, but two key factors are the cooling rate during solidification and the homogenization heat treatment. In this work, the effect of cooling rate on the formation of W-phase in Al-Cu-Sc alloys is investigated utilizing wedge molds that produce solidification rates from ~0.25 to 100 K/s. Samples are examined in both the as-cast state and following homogenization and aging treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis JR (1993) ASM Specialty Handbook: Aluminum and Aluminum Alloys. ASM International.

    Google Scholar 

  2. Dorin T, Ramajayam M, Lamb J, Langan T (2017) Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys. Mater Sci Eng A 707:58–64. https://doi.org/https://doi.org/10.1016/j.msea.2017.09.032

    Article  CAS  Google Scholar 

  3. Deane K, Sanders P (2018) Effect of Zr Additions on Thermal Stability of Al-Cu Precipitates in As-Cast and Cold Worked Samples. Metals 8:331. https://doi.org/https://doi.org/10.3390/met8050331

    Article  CAS  Google Scholar 

  4. Shin D, Shyam A, Lee S, et al (2017) Solute segregation at the Al/θ′-Al2Cu interface in Al-Cu alloys. Acta Mater 141:327–340. https://doi.org/https://doi.org/10.1016/j.actamat.2017.09.020

    Article  CAS  Google Scholar 

  5. Jiang L, Rouxel B, Langan T, Dorin T (2021) Coupled segregation mechanisms of Sc, Zr and Mn at θ′ interfaces enhances the strength and thermal stability of Al-Cu alloys. Acta Mater 206:116634. https://doi.org/https://doi.org/10.1016/j.actamat.2021.116634

    Article  CAS  Google Scholar 

  6. Suski W, Cichorek T, Wochowski K, et al (1997) Low-temperature electrical resistance of the U(Cu,Ni)4Al8 system and magnetic and electrical properties of ScCu4+xAl8−x. Phys B Condens Matter 230–232:324–326. https://doi.org/https://doi.org/10.1016/S0921-4526(96)00704-1

    Article  Google Scholar 

  7. Bo H, Liu LB, Jin ZP (2010) Thermodynamic analysis of Al–Sc, Cu–Sc and Al–Cu–Sc system. J Alloys Compd 490:318–325. https://doi.org/https://doi.org/10.1016/j.jallcom.2009.10.003

    Article  CAS  Google Scholar 

  8. Gazizov M, Teleshov V, Zakharov V, Kaibyshev R (2011) Solidification behaviour and the effects of homogenisation on the structure of an Al–Cu–Mg–Ag–Sc alloy. J Alloys Compd 509:9497–9507. https://doi.org/https://doi.org/10.1016/j.jallcom.2011.07.050

    Article  CAS  Google Scholar 

  9. Lee S-L, Wu C-T, Chen Y-D (2015) Effects of Minor Sc and Zr on the Microstructure and Mechanical Properties of Al-4.6Cu-0.3Mg-0.6Ag Alloys. J Mater Eng Perform 24:1165–1172. https://doi.org/https://doi.org/10.1007/s11665-014-1364-2

    Article  CAS  Google Scholar 

  10. Zakharov VV, Rostova TD (1995) On the possibility of scandium alloying of copper-containing aluminum alloys. Met Sci Heat Treat 37:65–69. https://doi.org/https://doi.org/10.1007/BF01157047

    Article  Google Scholar 

  11. Thermo-Calc Software TCAL8 Al-alloys database. (accessed 1 Feb 2022).

    Google Scholar 

  12. Norman AF, Hyde K, Costello F, et al (2003) Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater Sci Eng A 354:188–198. https://doi.org/https://doi.org/10.1016/S0921-5093(02)00942-5

    Article  CAS  Google Scholar 

  13. Bogno A-A, Henein H, Ivey DG, et al (2020) Effects of scandium on rapid solidified hypo-eutectic aluminium copper. Can Metall Q 59:101–115. https://doi.org/https://doi.org/10.1080/00084433.2019.1696606

    Article  CAS  Google Scholar 

  14. Bogno A-A, Valloton J, Henein H, et al (2018) Effects of scandium on hypoeutectic aluminium copper microstructures under low solidification rate conditions. Can Metall Q 57:148–159. https://doi.org/https://doi.org/10.1080/00084433.2017.1403106

    Article  CAS  Google Scholar 

  15. Qin J, Ma M, Tan P, et al (2022) Effects of Sc alloying on the evolution of solidification microstructure and formation of W phase in as-cast 2519 aluminum alloys. J Alloys Compd 898:162764. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.162764

    Article  CAS  Google Scholar 

  16. Jia M, Zheng Z, Gong Z (2014) Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J Alloys Compd 614:131–139. https://doi.org/https://doi.org/10.1016/j.jallcom.2014.06.033

    Article  CAS  Google Scholar 

  17. Gao YH, Kuang J, Liu G, Sun J (2019) Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al-Cu alloys during homogenization treatment. Mater Sci Eng A 746:11–26. https://doi.org/https://doi.org/10.1016/j.msea.2018.12.099

    Article  CAS  Google Scholar 

  18. Eskin DG, Katgerman L (2009) Solidification phenomena related to direct chill casting of aluminium alloys: fundamental studies and future challenges. Mater Technol 24:152–156. https://doi.org/https://doi.org/10.1179/106678509X12489478523537

    Article  CAS  Google Scholar 

  19. Das SK (2006) Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking. 74.

    Google Scholar 

  20. Rouxel B, Ramajayam M, Langan TJ, et al (2020) Effect of dislocations, Al3(Sc,Zr) distribution and ageing temperature on θ′ precipitation in Al-Cu-(Sc)-(Zr) alloys. Materialia 9:100610. https://doi.org/https://doi.org/10.1016/j.mtla.2020.100610

    Article  CAS  Google Scholar 

  21. Lamb J, Rouxel B, Langan T, Dorin T (2020) Novel Al-Cu-Mn-Zr-Sc Compositions Exhibiting Increased Mechanical Performance after a High-Temperature Thermal Exposure. J Mater Eng Perform 29:5672–5684. https://doi.org/https://doi.org/10.1007/s11665-020-05040-0

    Article  CAS  Google Scholar 

  22. Røyset J, Leinum JR, Øverlie HG, Reiso O (2006) An Investigation of the Solubility of Scandium in Iron-Bearing Constituent Particles in Aluminium Alloys. Mater Sci Forum 519–521:531–536. https://doi.org/https://doi.org/10.4028/www.scientific.net/MSF.519-521.531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin DePottey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

DePottey, A., Jiang, L., Dorin, T., Wood, T., Langan, T., Sanders, P. (2023). Effect of Cooling Rate on W-Phase Formation in Al-Cu-Sc Alloys. In: Broek, S. (eds) Light Metals 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22532-1_166

Download citation

Publish with us

Policies and ethics