Skip to main content

Ultra-Low-Voltage Clock References

  • Chapter
  • First Online:
Analog and Mixed-Signal Circuits in Nanoscale CMOS

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1113 Accesses

Abstract

Clock references are indispensable circuit modules. The Internet of Things (IoT) devices, in particular, usually require a reference with high spectral purity for the phase-locked loop to generate the carrier signal and a low-power always-on reference to serve as the timer. This chapter discusses the design of two clock references operating at ultra-low supply voltage (<0.5 V) for energy-harvesting Internet-of-Things sensor nodes. The first is a sub-0.5 V 16/24 MHz crystal oscillator with a fast startup feature to accommodate the periodic duty-cycling scheme of the Internet-of-Things device. We prototyped the design in 65 nm CMOS (complementary metal-oxide semiconductor). The second is a 0.35 V 2.1 MHz fully integrated relaxation oscillator implemented in 28 nm CMOS. It features an asymmetric swing-boosted RC (resistor-capacitor) network and a dual-path comparator to surmount the challenges of sub-0.5 V operation while achieving temperature resilience. This chapter elaborates both designs in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017, March). The future of industrial communication. IEEE Industrial Electronics Magazine, 11, 17–27.

    Article  Google Scholar 

  2. Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, M. (2016, November). Internet-of-things-based smart environments: State of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23(5), 10–16.

    Article  Google Scholar 

  3. Bahai, A. (2016, September). Ultra-low energy systems: Analog to information. In Procceedings of the European Solid-State Circuits Conference (ESSCIRC) (pp. 3–6).

    Google Scholar 

  4. Bandyopadhyay, S., & Chandrakasan, A. P. (2012, September). Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor. IEEE Journal of Solid-State Circuits, 47(9), 2199–2215.

    Article  Google Scholar 

  5. Weng, P. S., Tang, H. Y., Ku, P. C., & Lu, L. H. (2013, April). 50 mV-input batteryless boost converter for thermal energy harvesting. IEEE Journal of Solid-State Circuits, 48(4), 1031–1041.

    Article  Google Scholar 

  6. Bito, J., Bahr, R., Hester, J. G., Nauroze, S. A., Georgiadis, A., & Tentzeris, M. M. (2017, May). A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient Internet-of-Things wireless sensors. IEEE Transactions on Microwave Theory and Techniques, 65(5), 1831–1842.

    Article  Google Scholar 

  7. Lei, K.-M., Mak, P.-I., Law, M.-K., & Martins, R. P. (2018, September). A regulation free sub-0.5-V 16−/24-MHz crystal oscillator with 14.2-nJ startup energy and 31.8-μW steady-state power. IEEE Journal of Solid-State Circuits, 53(9), 2624–2635.

    Article  Google Scholar 

  8. Lei, K.-M., Mak, P.-I., & Martins, R. (2021, September). A 0.35-V 5,200-μm2 2.1-MHz temperature-resilient relaxation oscillator with 667 fJ/cycle energy efficiency using an asymmetric swing-boosted RC network and a dual-path comparator. IEEE Journal of Solid-State Circuits, 56(9), 2701–2710.

    Article  Google Scholar 

  9. Tsai, M.-D., Yeh, C.-W., Cho, Y.-H., Ke, L.-W., Chen, P.-W., & Dehng, G.-K. (2008, June). A temperature-compensated low-noise digitally-controlled crystal oscillator for multi-standard applications. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (pp. 533–536).

    Google Scholar 

  10. Chang, Y., Leete, J., Zhou, Z., Vadipour, M., Chang, Y.-T., & Darabi, H. (2012, February). A differential digitally controlled crystal oscillator with a 14-bit tuning resolution and sine wave outputs for cellular applications. IEEE Journal of Solid-State Circuits, 47(2), 421–434.

    Article  Google Scholar 

  11. Iguchi, S., Sakurai, T., & Takamiya, M. (2017, November). A low-power CMOS crystal oscillator using a stacked-amplifier architecture. IEEE Journal of Solid-State Circuits, 52(11), 3006–3017.

    Article  Google Scholar 

  12. Lei, K.-M., Mak, P.-I., & Martins, R. P. (2021, January). Startup time and energy reduction techniques for crystal oscillators in the IoT era. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1), 30–35.

    Google Scholar 

  13. Griffith, D., Murdock, J., & Røine, P. T. (2016, February). A 24MHz crystal oscillator with robust fast start-up using dithered injection. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 104–105).

    Google Scholar 

  14. Nordic Semiconductor. (2018). nRF52840 Data Sheet [Online]. Available:http://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.0.pdf

  15. Liu, Y.-H., Bachmann, C., Wang, X., Zhang, Y., Ba, A., Busze, B., et al. (2015, February). A 3.7 mW-RX 4.4 mW-TX fully integrated Bluetooth Low-Energy/IEEE802. 15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40nm CMOS. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 236–237).

    Google Scholar 

  16. Kuo, F. W., Ferreira, S. B., Chen, H. N. R., Cho, L. C., Jou, C. P., Hsueh, F. L., et al. (2017, April). A bluetooth low-energy transceiver with 3.7-mW all-digital transmitter, 2.75-mW high-IF discrete-time receiver, and TX/RX switchable on-chip matching network. IEEE Journal of Solid-State Circuits, 52(4), 1144–1162.

    Article  Google Scholar 

  17. Liu, H., Sun, Z., Tang, D., Huang, H., Kaneko, T., Deng, W., et al. (2018, February). An ADPLL-centric bluetooth low-energy transceiver with 2.3mW interference-tolerant hybrid-loop receiver and 2.9mW single-point polar transmitter in 65nm CMOS. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 444–445).

    Google Scholar 

  18. Blanchard, S. A. (2003, June/July). Quick start crystal oscillator circuit. In Proceedings of the IEEE University/Government/Industry Microelectronics Symposium (pp. 78–81).

    Google Scholar 

  19. Iguchi, S., Fuketa, H., Sakurai, T., & Takamiya, M. (2016, February). Variation-tolerant quick-start-up CMOS crystal oscillator with chirp injection and negative resistance booster. IEEE Journal of Solid-State Circuits, 51(2), 496–508.

    Article  Google Scholar 

  20. Ding, M., Liu, Y.-H., Zhang, Y., Lu, C., Zhang, P., Busze, B., et al. (2017, February). A 95μW 24MHz digitally controlled crystal oscillator for IoT applications with 36nJ start-up energy and >13× start-up time reduction using a fully-autonomous dynamically-adjusted load. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 90–91).

    Google Scholar 

  21. Esmaeelzadeh, H., & Pamarti, S. (2018, March). A quick startup technique for high-Q oscillators using precisely timed energy injection. IEEE Journal of Solid-State Circuits, 53(3), 692–702.

    Article  Google Scholar 

  22. Kwon, Y.-I., Park, S.-G., Park, T.-J., Cho, K.-S., & Lee, H.-Y. (2012, February). An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(2), 324–336.

    Article  MathSciNet  Google Scholar 

  23. Texas Instruments. (2013). CC2541 Data Sheet [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2541.pdf

  24. Zhang, F., Miyahara, Y., & Otis, B. P. (2013, December). Design of a 300-mV 2.4-GHz receiver using transformer-coupled techniques. IEEE Journal of Solid-State Circuits, 48(12), 3190–3205.

    Article  Google Scholar 

  25. Babaie, M., Kuo, F. W., Chen, H. N. R., Cho, L. C., Jou, C. P., Hsueh, F. L., et al. (2016, July). A fully integrated Bluetooth Low-Energy transmitter in 28 nm CMOS with 36% system efficiency at 3 dBm. IEEE Journal of Solid-State Circuits, 51(7), 1547–1565.

    Article  Google Scholar 

  26. Yu, W.-H., Yi, H., Mak, P.-I., Yin, J., & Martins, R. P. (2017, February). A 0.18 V 382μW bluetooth low-energy (BLE) receiver with 1.33 nW sleep power for energy-harvesting applications in 28nm CMOS. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 414–415).

    Google Scholar 

  27. Yin, J., Yang, S., Yi, H., Yu, W.-H., Mak, P.-I., & Martins, R. P. (2018, February). A 0.2V energy-harvesting BLE transmitter with a micropower manager achieving 25% system efficiency at 0dBm output and 5.2nW sleep power in 28nm CMOS. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 450–451).

    Google Scholar 

  28. Lei, K.-M., Mak, P.-I., Law, M.-K., & Martins, R. (2018, February). A regulation-free sub-0.5V 16/24MHz crystal oscillator for energy-harvesting BLE radios with 14.2nJ startup energy and 31.8μW steady-state power. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 52–53).

    Google Scholar 

  29. Klauder, J. R., Price, A. C., Darlington, S., & Albersheim, W. J. (1960, July). The theory and design of chirp radars. The Bell System Technical Journal, 39(4), 745–808.

    Article  Google Scholar 

  30. Vittoz, E. A., Degrauwe, M. G., & Bitz, S. (1988, March). High-performance crystal oscillator circuits: Theory and application. IEEE Journal of Solid-State Circuits, 23(3), 774–783.

    Article  Google Scholar 

  31. Lei, K.-M., Mak, P.-I., & Martins, R. P. (2017, May). A 0.4 V 4.8 μW 16MHz CMOS crystal oscillator achieving 74-fold startup-time reduction using momentary detuning. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2791–2794).

    Google Scholar 

  32. Iguchi, S., Saito, A., Zheng, Y., Watanabe, K., Sakurai, T., & Takamiya, M. (2013, June). 93% power reduction by automatic self power gating (ASPG) and multistage inverter for negative resistance (MINR) in 0.7 V, 9.2 μW, 39MHz crystal oscillator. IEEE Proceedings of the Symposium on VLSI Circuits, C142–C143.

    Google Scholar 

  33. Bluetooth Core Specification v5.0 [Online]. Available: https://www.bluetooth.com/specifications/bluetooth-core-specification

  34. Khan, O., et al. (2016, May). Frequency reference for crystal free radio. In IEEE International Frequency Control Symposium (pp. 1–2).

    Google Scholar 

  35. Pletcher, N. M., Gambini, S., & Rabaey, J. (2009, January). A 52 μW wakeup receiver with −72 dBm sensitivity using an uncertain-IF architecture. IEEE Journal of Solid-State Circuits, 44(1), 269–280.

    Article  Google Scholar 

  36. Sundaresan, K., Allen, P., & Ayazi, F. (2006, February). Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE Journal of Solid-State Circuits, 41(2), 433–442.

    Article  Google Scholar 

  37. Zhang, L., Kuo, N.-C., & Niknejad, A. (2019, October). A 37.5–45 GHz superharmonic-coupled QVCO with tunable phase accuracy in 28 nm CMOS. IEEE Journal of Solid-State Circuits, 54(10), 2754–2764.

    Article  Google Scholar 

  38. Ding, X., Wu, J., & Chen, C. (2019, February). A low-power 0.6-V quadrature VCO with a coupling current reuse technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(2), 202–206.

    Google Scholar 

  39. Meng, X., Li, X., Cheng, L., Tsui, C.-Y., & Ki, W.-H. (2019, December). A low power relaxation oscillator with switched-capacitor frequency-locked loop for wireless sensor node applications. IEEE Solid-State Circuits Letters, 2(12), 281–284.

    Article  Google Scholar 

  40. Mikulić, J., Schatzberger, G., & Barić, A. (2017, September). A 1-MHz on-chip relaxation oscillator with comparator delay cancelation. In Proceedings of the European Conference on Solid-State Circuits (ESSCIRC) (pp. 95–98).

    Google Scholar 

  41. Savanth, A., Weddell, A., Myers, J., Flynn, D., & Al-Hashimi, B. (2019, November). A sub-nW/kHz relaxation oscillator with ratioed reference and sub-clock power gated comparator. IEEE Journal of Solid-State Circuits, 54(11), 3097–3106.

    Article  Google Scholar 

  42. Tokairin, T., et al. (2012, June). A 280nW, 100kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feedforward period control scheme. IEEE proceedings of the Symposium VLSI Circuits, 16–17.

    Google Scholar 

  43. Koo, J., Moon, K.-S., Kim, B., Park, H.-J., & Sim, J.-Y. (2017, February). A quadrature relaxation oscillator with a process-induced frequency-error compensation loop. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 94–95).

    Google Scholar 

  44. Liu, N., et al. (2019, July). A 2.5 ppm/°C 1.05-MHz relaxation oscillator with dynamic frequency-error compensation and fast start-up time. IEEE Journal of Solid-State Circuits, 54(7), 1952–1959.

    Article  Google Scholar 

  45. Lee, J., George, A. K., & Je, M. (2020, September). An ultra-low-noise swing-boosted differential relaxation oscillator in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 55(9), 2489–2497.

    Article  Google Scholar 

  46. Lu, S.-Y., & Liao, Y.-T. (2019, February). A low-power, differential relaxation oscillator with the self-threshold-tracking and swing-boosting techniques in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 54(2), 392–402.

    Article  Google Scholar 

  47. Zhou, W., Goh, W. L., & Gao, Y. (2020, October). A 3-MHz 17.3-μW 0.015% period jitter relaxation oscillator with energy efficient swing boosting. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(10), 1745–1749.

    Google Scholar 

  48. Abidi, A. A., & Meyer, R. G. (1983, December). Noise in relaxation oscillators. IEEE Journal of Solid-State Circuits, 18(6), 794–802.

    Article  Google Scholar 

  49. Razavi, B. (2001). Design of Analog CMOS integrated circuits. Mc Graw Hill.

    Google Scholar 

  50. Ho, Y., Yang, Y.-S., Chang, C., & Su, C. (2013, November). A near-threshold 480 MHz 78 μW all-digital PLL with a bootstrapped DCO. IEEE Journal of Solid-State Circuits, 48(11), 2805–2814.

    Article  Google Scholar 

  51. Lee, H., Li, Z., Durrant, J. R., & Tsoi, W. C. (2016, June). Is organic photovoltaics promising for indoor applications? Applied Physics Letters, 108(25), 1–5.

    Article  Google Scholar 

  52. Liao, W., et al. (2016, November). Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Advanced Materials, 28(42), 9333–9340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Meng Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, KM., Mak, PI., Martins, R.P. (2023). Ultra-Low-Voltage Clock References. In: Paulo da Silva Martins, R., Mak, PI. (eds) Analog and Mixed-Signal Circuits in Nanoscale CMOS. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-031-22231-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22231-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22230-6

  • Online ISBN: 978-3-031-22231-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics