Skip to main content

An Enhanced Hybrid Jaya Algorithm for Size Optimization of Truss Structure Under Frequency Constraints

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 602))

Included in the following conference series:

Abstract

This paper proposed an enhanced hybrid Jaya algorithm, called AEHJ. The proposed AEHJ is a new improvisation of the Jaya algorithm (Jaya) and the differential evolution algorithm (DE) with two modifications. Firstly, the local search is improved by using DE/best/1, DE/best/2, and Jaya operators. Secondly, an elitist selection approach is used for choosing the best solution for the next population. For validating the feasibility of AEHJ, the well-known benchmark example of size optimization for a 10-bar truss is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nguyen-Van, S., Nguyen, T.T.N., Nguyen-Dinh, N., Lieu, Q.X.: Truss optimization under frequency constraints by using a combined differential evolution and jaya algorithm (2021). https://doi.org/10.1007/978-3-030-64719-3_95

  2. Nguyen-Van, S., Nguyen-Dinh, N., Duong, P.T.M., Hung, N.Q., Nguyen, T.T.N.: The dimensional synthesis of the four-bar mechanism with a symbiotic organisms search algorithm. In: Advances in Engineering Research and Application. pp. 780–791. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64719-3_85

  3. Lieu, Q.X., Do, D.T.T., Lee, J.: An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints. Comput. Struct. 195, 99–112 (2018)

    Article  Google Scholar 

  4. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  5. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  6. Holland, J.H.: Genetic algorithms and adaptation. In: Adaptive Control of Ill-Defined Systems. pp. 317–333. Springer US (1984). https://doi.org/10.1007/978-1-4684-8941-5_21

  7. Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim. 23, 341–359 (1997)

    Article  MATH  Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, pp. 1942–1948. IEEE. https://doi.org/10.1109/ICNN.1995.488968

  9. Cheng, M.Y., Prayogo, D.: Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014)

    Article  Google Scholar 

  10. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15. Springer Netherlands, Dordrecht (1987). https://doi.org/10.1007/978-94-015-7744-1_2

  11. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. (Ny) 179, 2232–2248 (2009). https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  12. Formato, R.A.: Central force optimization: A new nature inspired computational framework for multidimensional search and optimization. Stud. Comput. Intell. 129, 221–238 (2008). https://doi.org/10.1007/978-3-540-78987-1_21

    Article  Google Scholar 

  13. Hsiao, Y.T., Chuang, C.L., Jiang, J.A., Chien, C.C.: A novel optimization algorithm: space gravitational optimization. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 2323–2328 (2005). https://doi.org/10.1109/icsmc.2005.1571495

  14. Venkata Rao, R.: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 19–34 (2016)

    Google Scholar 

  15. Frans, R., Arfiadi, Y.: Sizing, shape, and topology optimizations of roof trusses using hybrid genetic algorithms. In: Procedia Engineering, pp. 185–195. Elsevier Ltd (2014)

    Google Scholar 

  16. Sonmez, M.: Performance comparison of metaheuristic algorithms for the optimal design of space trusses. Arab. J. Sci. Eng. 43(10), 5265–5281 (2018). https://doi.org/10.1007/s13369-018-3080-y

    Article  Google Scholar 

  17. Luu, T.V., Nguyen, N.S.: Parameters extraction of solar cells using modified JAYA algorithm. Optik (Stuttg). 203, 164034 (2020)

    Google Scholar 

  18. Alomoush, A., Alsewari, A.A., Alamri, H.S., Zamli, K.Z.: Solving 0/1 knapsack problem using hybrid HS and jaya algorithms. Adv. Sci. Lett. 24, 7486–7489 (2018)

    Article  Google Scholar 

  19. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  20. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Padhye, N., Bhardawaj, P., Deb, K.: Improving differential evolution through a unified approach. J. Glob. Optim. 55, 771–799 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Do, D.T.T., Lee, J.: A modified symbiotic organisms search (mSOS) algorithm for optimization of pin-jointed structures. Appl. Soft Comput. J. 61, 683–699 (2017)

    Article  Google Scholar 

  23. Gomes, H.M.: Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst. Appl. 38, 957–968 (2011)

    Article  Google Scholar 

  24. Lingyun, W., Mei, Z., Guangming, W., Guang, M.: Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. Comput. Mech. 35, 361–368 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This research was supported by Thai Nguyen University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luong Viet Dung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, N.T.T., Nguyen-Van, S., Diem, T.T.T., Nguyen-Dinh, N., Hoang, TD., Dung, L.V. (2023). An Enhanced Hybrid Jaya Algorithm for Size Optimization of Truss Structure Under Frequency Constraints. In: Nguyen, D.C., Vu, N.P., Long, B.T., Puta, H., Sattler, KU. (eds) Advances in Engineering Research and Application. ICERA 2022. Lecture Notes in Networks and Systems, vol 602. Springer, Cham. https://doi.org/10.1007/978-3-031-22200-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22200-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22199-6

  • Online ISBN: 978-3-031-22200-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics