Skip to main content

Fuzzy Classifier Using the Particle Swarm Optimization Algorithm for the Diagnosis of Arterial Hypertension

  • Chapter
  • First Online:
Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1061))

  • 214 Accesses

Abstract

The main objective of this article is the creation of a new fuzzy classifier, using the optimization algorithm by means of particles, to optimize the structures of the type-1 and type-2 fuzzy systems, (such as parameters and type of membership functions, type of system, and number of rules).Tests were carried out with 40 patients and the blood pressure readings of the patients were taken at a time interval for 24 h, and these were taken through an ambulatory blood pressure monitor (ABPM). In this work, good results for Classification and Diagnosis of Arterial Hypertension with the proposed model are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Akdemïr, S. Günes, B. Oran, S. Karaaslan, Expert Syst. Appl. 37(8), 720–5727 (2010)

    Article  Google Scholar 

  2. J.N. Booth III., K.M. Diaz, S.R. Seals, M. Sims, J. Ravenell, P. Muntner, D. Shimbo, Masked hypertension and cardiovascular disease events in a prospective cohort of blacks, the Jackson heart study. Hypertension 68, 501–510 (2016)

    Article  Google Scholar 

  3. H. Bustince, E. Barrenechea, M. Pagola, M. Fernandez, Interval valued fuzzy sets constructed from matrices, application to edge detection. Fuzzy Sets Syst. 160(13), 1819–1840 (2009)

    Article  MATH  Google Scholar 

  4. D.A. Calhoun, D. Jones, S. Textor, D.C. Goff, T.P. Murphy, R.D. Toto, A. White, W.C. Cushman, W. White, D. Sica, K. Ferdinand, T.D. Giles, B. Falkner, R.M. Carey, Resistant hypertension: diagnosis, evaluation, and treatment, a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension, 1403–1419 (2008)

    Google Scholar 

  5. O. Castillo, P. Melin, Type-2 Fuzzy Logic Theory and Applications (Springer, Berlin, Germany, 2008)

    Book  MATH  Google Scholar 

  6. S. Chen, Y. Chang, J. Pan, Fuzzy rules interpolation for sparse fuzzy rule based systems based on interval type-2 Gaussian fuzzy sets and genetic algorithms. IEEE Trans. Fuzzy Syst. 21(3), 412–425 (2013)

    Article  Google Scholar 

  7. S. Das, P.K. Ghosh, S. Kar, Hypertension diagnosis: a comparative study using fuzzy expert system and neuro fuzzy system, in IEEE International Conference on Fuzzy Systems, Durgapur, India, vol. 148 (IEEE, 2013), pp. 113–120

    Google Scholar 

  8. X.Y. Djam, Y.H. Kimbi, Fuzzy expert system for the management of hypertension. Pac. J. Sci. Technol. 11, 1 (2011)

    Google Scholar 

  9. S. Desch, T. Okon, D. Heinemann, K. Kulle, K. Röhnert, M. Sonnabend, M. Petzold, U. Müller, G. Schuler, I. Eitel, H. Thiele, P. Lurz, Randomized sham controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension 1202–208 (2015)

    Google Scholar 

  10. B.M. Egan, Y. Zhao, J. Li, W.A. Brzezinski, T.M. Todoran, R.D. Brook, D.A. Calhoun, Prevalence of optimal treatment regimens in patients with apparent treatment resistant hypertension based on office blood pressure in a community-based practice network. Hypertension 691–697 (2013)

    Google Scholar 

  11. P. Engelbrech, Basic particle swarm optimization, in Fundamentals of Computational of Swarm Intelligence (Wiley, 2005), pp. 93–129

    Google Scholar 

  12. L. Golman, Ausiell, R.J. Johnson, I.B. Rodriguez, T. Nakagawa, D.H. Kang, D.I. Feig et al., Subtle renal injury is likely a common mechanism for salt-sensitive essential hypertension. Hypertension 45, 326–330 (2001) (Diccionario de la Real Academia Española. 22ª ed. Tomo España)

    Google Scholar 

  13. B. González, F. Valdez, P. Melin, G. Prado-Arechiga, Fuzzy logic in the gravitational search algorithm for the optimization of modular neural network pattern recognition. Expert Syst. Appl. 42(14), 5839–5847 (2015)

    Google Scholar 

  14. T.W. Hansen, Y. Li, J. Boggia, L. Thijs, T. Richart, J.A. Staessen, Predictive role of the nighttime blood pressure. Hypertension 57, 3–10 (2011)

    Google Scholar 

  15. K. Heusser, J. Tank, J. Brinkmann, J. Menne, J. Kaufeld, S. Linnenweber-Held, J. Beige, M. Wilhelmi, A. Diedrich, H. Haller, J. Jordan, Acute response to unilateral unipolar electrical carotid sinus stimulation in patients with resistant arterial hypertension. Hypertension 67, 585–591 (2016)

    Article  Google Scholar 

  16. J.S.R. Jang, C.T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing (Prentice Hall, 1996)

    Google Scholar 

  17. N. Karnik, M. Mendel, Applications of type-2 fuzzy logic systems to forecasting of time-series. 89–111 (1999)

    Google Scholar 

  18. J. Mendel, A quantitative comparison of interval type-2 and type1fuzzy logic systems: first results, in Proceedings of the IEEE International Conference on Fuzzy Systems (IEEE, 2010), pp. 1–8

    Google Scholar 

  19. J. Mendel, Comments on alpha-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 18(1), 229–230 (2010)

    Article  Google Scholar 

  20. J. Mendel, Uncertain, Rule-Based Fuzzy Logic Systems: Introduction and New Directions (Prentice-Hall, Englewood Cliffs, NJ, USA, 2001)

    MATH  Google Scholar 

  21. P. Muntner, R.C. Becker, D. Calhoun et al., Introduction to the American Heart Association’s hypertension strategically focused research network. Hypertension 67, 674–680 (2016)

    Article  Google Scholar 

  22. S. Muthukaruppan, M.J. Er, A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. Expert Syst. Appl. 39(14), 11657–11665 (2012)

    Google Scholar 

  23. T. Noia, C. Ostuni, F. Pesce, G. Binetti, D. Naso, F.P. Schena, E. Sciascio, An end-stage kidney disease predictor based on artificial neural networks ensembles. Expert Syst. Appl. 40(11), 4438–4445 (2013)

    Google Scholar 

  24. S.D. Persell, Prevalence of resistant hypertension in the United States. Hypertension 57, 1076–1080 (2011)

    Google Scholar 

  25. S. Polak, M. Alesksander, Artificial neural networks based Internet hypertension prediction tool development and validation. Appl. Soft Comput. 8(1), 734–739 (2008)

    Google Scholar 

  26. M. Rahman, T. Greene, R.A. Phillips et al., A trial of 2 strategies to reduce nocturnal blood pressure in blacks with chronic kidney disease. Hypertension 61, 82–88 (2013)

    Article  Google Scholar 

  27. J. Richards, A.N. Diaz, M.L. Gumz, Clock genes in hypertension: novel insights from rodent models. Blood Press. Monit. 19, 249–254 (2014)

    Article  Google Scholar 

  28. D.R. Roberie, W.J. Elliott, What is the prevalence of resistant hypertension in the United States. Curr. Opin. Cardiol. 27, 86–391 (2012)

    Article  Google Scholar 

  29. J. Sim, J. Handler, S.J. Jacobsen, M.H. Kanter, Systemic implementation strategies to improve hypertension: the Kaiser Permanente Southern California experience. Can. J. Cardio. 30, 544–552 (2014)

    Article  Google Scholar 

  30. C. Su, C. Yang, Feature selection for the SVM: an application to hypertension diagnosis. Expert Syst. Appl. 34(1), 754–763 (2008)

    Google Scholar 

  31. M. Ture, I. Kurt, A. Kurum, K. Ozdamar, Comparing classification technique for predicting essential hypertension. Expert Syst. Appl. 29(3), 583–588 (2005)

    Google Scholar 

  32. A. Wang, N. An, G. Chen, L. Li, G. Alterovitz, Predicting hypertension without measurement: a non-invasive, questionnaire-based approach. Expert Syst. Appl. 42, 7601–7609 (2015)

    Article  Google Scholar 

  33. J.T. Wright, L. Agodoa, G. Contreras, T. Greene, J.G. Douglas, J. Lash, O. Randall, N. Rogers, M.C. Smith, S. Massry, African American study of kidney disease and hypertension study group. Successful blood pressure control in the African American study of kidney disease and hypertension. Arch. Intern. Med. (2002)

    Google Scholar 

  34. L.A. Zadeh, R. Yager et al., Fuzzy Sets and Applications: Selected (Wiley, New York, 1987)

    Google Scholar 

  35. H. Zhang, F.C. Lin, Medical diagnosis by the virtual physician, in Proceedings 12th IEEE Symposium on Computer-Based Medical Systems Computer based medical system, 1999 (IEEE, 2009), pp. 296–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pulido, M., Melin, P. (2023). Fuzzy Classifier Using the Particle Swarm Optimization Algorithm for the Diagnosis of Arterial Hypertension. In: Castillo, O., Melin, P. (eds) Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design. Studies in Computational Intelligence, vol 1061. Springer, Cham. https://doi.org/10.1007/978-3-031-22042-5_5

Download citation

Publish with us

Policies and ethics