Skip to main content

Rendezvous and Docking Control of Satellites Using Chaos Synchronization Method with Intuitionistic Fuzzy Sliding Mode Control

  • Chapter
  • First Online:
Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1061))

Abstract

In this study, two different controllers have been designed to perform the rendezvous and docking tasks of two nonidentical and noncooperative cubic satellites. Firstly, the motion of cubic satellites was modeled with chaotic equations. After selecting suitable chaotic models, fuzzy sliding mode controller (FSMC) and a new intuitionistic fuzzy sliding mode controller (IFSMC), which are applied to synchronization systems under the same initial conditions, have been designed. It has been observed that both synchronizations reach stability by applying the controllers designed by considering the Lyapunov stability criteria. After a while, a short-term and random disturbance was applied to the synchronization systems and the response of both controllers was observed. The numerical results showed that the synchronization system with both controllers was stable, robust, efficient, fast and chattering-free. However, synchronization system with IFSMC was found to be more robust, faster and more efficient than synchronization system with FSMC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Akram, S. Habib, I. Javed, Intuitionistic fuzzy logic control for washing machines. Indian J. Sci. Technol. 7, 654–661 (2014). https://doi.org/10.17485/ijst/2014/v7i5.20

  2. M. Akram, S. Shahzad, A. Butt, A. Khaliq, Intuitionistic fuzzy logic control for heater fans. Math. Comput. Sci. 7, 367–378 (2013). https://doi.org/10.1007/s11786-013-0161-x

    Article  MATH  Google Scholar 

  3. Ö. Atan, F. Kutlu, Synchronization control of two chaotic systems via a novel fuzzy control method, in 2nd International Conference on Pure and Applied Mathematics (2018), p. 51

    Google Scholar 

  4. Ö. Atan, F. Kutlu, O. Castillo, Intuitionistic fuzzy sliding controller for uncertain hyperchaotic synchronization. Int. J. Fuzzy Syst. 22, 1430–1443 (2020). https://doi.org/10.1007/s40815-020-00878-x

    Article  Google Scholar 

  5. K. Atanassov, Intuitionistic Fuzzy Sets (Physica, Heidelberg, 1999)

    Book  MATH  Google Scholar 

  6. O. Castillo, Framework for optimization of ıntuitionistic and type-2 fuzzy systems in control applications, in Recent Advances in Intuitionistic Fuzzy Logic Systems (Springer, 2019), pp. 79–86. https://doi.org/10.1007/978-3-030-02155-9_7

  7. O. Castillo, F. Kutlu, Ö. Atan, Intuitionistic fuzzy control of twin rotor multiple input multiple output systems. J. Intell. Fuzzy Syst. 38, 821–833 (2020). https://doi.org/10.3233/JIFS-179451

    Article  Google Scholar 

  8. T. Chaira, Fuzzy Set and Its Extension: The Intuitionistic Fuzzy Set (Wiley, 2019). https://doi.org/10.1002/9781119544203

  9. M. Chegini, H. Sadati, H. Salarieh, Chaos analysis in attitude dynamics of a flexible satellite. Nonlinear Dyn. 93, 1421–1438 (2018). https://doi.org/10.1007/s11071-018-4269-z

    Article  MATH  Google Scholar 

  10. M. Chegini, H. Sadati, H. Salarieh, Analytical and numerical study of chaos in spatial attitude dynamics of a satellite in an elliptic orbit. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 561–577 (2018). https://doi.org/10.1177/0954406218762019

    Article  MATH  Google Scholar 

  11. H. Delavari, R. Ghaderi, A. Ranjbar, S. Momani, Fuzzy fractional order sliding mode controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15, 963–978 (2010). https://doi.org/10.1016/j.cnsns.2009.05.025

    Article  MATH  Google Scholar 

  12. K. Dong, J. Luo, Z. Dang, L. Wei, Tube-based robust output feedback model predictive control for autonomous rendezvous and docking with a tumbling target. Adv. Space Res. 65, 1158–1181 (2020). https://doi.org/10.1016/j.asr.2019.11.014

    Article  Google Scholar 

  13. E.D. Dongmo, K.S. Ojo, P. Woafo, A.N. Njah, Difference synchronization of ıdentical and nonidentical chaotic and hyperchaotic systems of different orders using active backstepping design. J. Comput. Nonlinear Dyn. 13 (2018). https://doi.org/10.1115/1.4039626

  14. D. Gao, J. Luo, W. Ma, B. Englot, Parameterized nonlinear suboptimal control for tracking and rendezvous with a non-cooperative target. Aerosp. Sci. Technol. 87, 15–24 (2019). https://doi.org/10.1016/j.ast.2019.01.044

    Article  Google Scholar 

  15. W. Hahn, Stability of Motion (Springer, Berlin, 1967)

    Book  MATH  Google Scholar 

  16. P. Hajek, V. Olej, Defuzzification methods in intuitionistic fuzzy inference systems of Takagi-Sugeno type: the case of corporate bankruptcy prediction, in 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FKSD) (2014), pp. 232–236. https://doi.org/10.1109/FSKD.2014.6980838

  17. P. Hájek, V. Olej, Adaptive ıntuitionistic fuzzy ınference systems of Takagi-Sugeno type for regression problems, in Artificial Intelligence Applications and Innovations (2012), pp. 206–216. https://doi.org/10.1007/978-3-642-33409-2_22

  18. I. Iancu, M. Gabroveanu, M. Cosulschi, Intuitionistic fuzzy control based on association rules, in Computational Collective Intelligence. Technologies and Applications (2013), pp. 235–244. https://doi.org/10.1007/978-3-642-40495-5_24

  19. W. Jiang, B. Wei, X. Liu, X. Li, H. Zheng, Intuitionistic fuzzy power aggregation operator based on entropy and its application in decision making. Int. J. Intell. Syst. 33, 49–67 (2018). https://doi.org/10.1002/int.21939

    Article  Google Scholar 

  20. A. Khan, S. Kumar, Study of chaos in chaotic satellite systems. Pramana J. Phys. 90, 1–9 (2018). https://doi.org/10.1007/s12043-017-1502-0

    Article  Google Scholar 

  21. A. Khan, S. Kumar, Measuring chaos and synchronization of chaotic satellite systems using sliding mode control. Optim. Control Appl. Methods 39, 1597–1609 (2018). https://doi.org/10.1002/oca.2428

    Article  MATH  Google Scholar 

  22. A. Khan, S. Kumar, Analysis and time-delay synchronisation of chaotic satellite systems. Pramana J. Phys. 91, 1–13 (2018). https://doi.org/10.1007/s12043-018-1610-5

    Article  Google Scholar 

  23. C.-L. Kuo, Design of an adaptive fuzzy sliding-mode controller for chaos synchronization. Int. J. Nonlinear Sci. Numer. Simul. 8, 631–636 (2007). https://doi.org/10.1515/IJNSNS.2007.8.4.631

    Article  Google Scholar 

  24. C.L. Kuo, T.H.S. Li, N.R. Guo, Design of a novel fuzzy sliding-mode control for magnetic ball levitation system. J. Intell. Robot. Syst. 42, 295–316 (2005). https://doi.org/10.1007/s10846-004-3026-3

    Article  Google Scholar 

  25. F. Kutlu, Ö. Atan, O. Silahtar, Intuitionistic fuzzy adaptive sliding mode control of nonlinear systems. Soft Comput. 24, 53–64 (2020). https://doi.org/10.1007/s00500-019-04286-8

    Article  MATH  Google Scholar 

  26. A. Lassoued, O. Boubaker, Hybrid chaotic synchronisation between identical and non-identical fractional-order systems. Int. J. Comput. Appl. Technol. 60, 134 (2019). https://doi.org/10.1504/IJCAT.2019.100134

    Article  Google Scholar 

  27. K.H. Lee, First Course on Fuzzy Theory and Applications (Springer, 2004). https://doi.org/10.1007/3-540-32366-x

  28. J. Li, Z. Gong, SISO intuitionistic fuzzy systems: IF-t-norm, IF-R-implication, and universal approximators. IEEE Access 7, 70265–70278 (2019). https://doi.org/10.1109/ACCESS.2019.2918169

    Article  Google Scholar 

  29. P. Li, Z.H. Zhu, Model predictive control for spacecraft rendezvous in elliptical orbit. Acta Astron. 146, 339–348 (2018). https://doi.org/10.1016/j.actaastro.2018.03.025

    Article  Google Scholar 

  30. Q. Li, B. Zhang, J. Yuan, H. Wang, Potential function based robust safety control for spacecraft rendezvous and proximity operations under path constraint. Adv. Space Res. 62, 2586–2598 (2018). https://doi.org/10.1016/j.asr.2018.08.003

    Article  Google Scholar 

  31. Y. Lin, X. Zhou, S. Gu, S. Wang, The Takagi-Sugeno ıntuitionistic fuzzy systems are universal approximators, in 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet) (IEEE, 2012), pp. 2214–2217. https://doi.org/10.1109/CECNet.2012.6202025

  32. Y. Liu, Y. Lyu, G. Ma, 6-DOF multi-constrained adaptive tracking control for noncooperative space target. IEEE Access 7, 48739–48752 (2019). https://doi.org/10.1109/ACCESS.2019.2910304

    Article  Google Scholar 

  33. A.M. Long, M.G. Richards, D.E. Hastings, On-orbit servicing: a new value proposition for satellite design and operation. J. Spacecraft Rockets 44, 964–976 (2007). https://doi.org/10.2514/1.27117

    Article  Google Scholar 

  34. M. Marinov, V. Lazarov, Intuitionistic fuzzy robot motion control. Probl. Eng. Cybern. Robot. 69, 40–51 (2018)

    Google Scholar 

  35. M.R. Mufti, H. Afzal, F. Ur-Rehman, W. Aslam, M.I. Qureshi, Transmission projective synchronization of multiple non-identical coupled chaotic systems using sliding mode control. IEEE Access 7, 17847–17861 (2019). https://doi.org/10.1109/ACCESS.2019.2895067

    Article  Google Scholar 

  36. V. Nekoukar, A. Erfanian, Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets Syst. 179, 34–49 (2011). https://doi.org/10.1016/j.fss.2011.05.009

    Article  MATH  Google Scholar 

  37. A. Ouannas, G. Grassi, A.T. Azar, A new generalized synchronization scheme to control fractional chaotic systems with non-identical dimensions and different orders. Advances in Intelligent Systems and Computing (Springer, 2020). https://doi.org/10.1007/978-3-030-14118-9_42

  38. J. Pomares, L. Felicetti, J. Pérez, M.R. Emami, Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers. Adv. Space Res. 61, 862–878 (2018). https://doi.org/10.1016/j.asr.2017.10.054

    Article  Google Scholar 

  39. L.L. Show, J.C. Juang, Y.W. Jan, An LMI-based nonlinear attitude control approach. IEEE Trans. Control Syst. Technol. 11, 73–83 (2003). https://doi.org/10.1109/TCST.2002.806450

    Article  Google Scholar 

  40. M.J. Sidi, Spacecraft Dynamics and Control: A Practical Engineering Approach (Cambridge University Press, 1997)

    Book  Google Scholar 

  41. S. Singh, A.T. Azar, Q. Zhu, Multi-switching master–slave synchronization of non-identical chaotic systems, in Innovative Techniques and Applications of Modelling, Identification and Control. Lecture Notes in Electrical Engineering, vol. 467 (2018), pp. 321–330. https://doi.org/10.1007/978-981-10-7212-3

  42. S.N. Sivanandam, S. Sumathi, S.N. Deepa, Introduction to Fuzzy Logic Using MATLAB (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-35781-0

    Book  MATH  Google Scholar 

  43. L. Sun, W. He, C. Sun, Adaptive fuzzy relative pose control of spacecraft during rendezvous and proximity maneuvers. IEEE Trans. Fuzzy Syst. 26, 3440–3451 (2018). https://doi.org/10.1109/TFUZZ.2018.2833028

    Article  Google Scholar 

  44. Z. Sun, Synchronization of fractional-order chaotic systems with non-identical orders, unknown parameters and disturbances via sliding mode control. Chin. J. Phys. 56, 2553–2559 (2018). https://doi.org/10.1016/j.cjph.2018.08.007

    Article  Google Scholar 

  45. A.P.M. Tsui, A.J. Jones, The control of higher dimensional chaos: comparative results for the chaotic satellite attitude control problem. Phys. D Nonlinear Phenom. 135, 41–62 (2000). https://doi.org/10.1016/S0167-2789(99)00114-1

    Article  MATH  Google Scholar 

  46. T.-C. Lin, T.-Y. Lee, Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19, 623–635 (2011). https://doi.org/10.1109/TFUZZ.2011.2127482

    Article  Google Scholar 

  47. S. Vaidyanathan, Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Adv. Intell. Syst. Comput. (AISC) 176, 329–337 (2012). https://doi.org/10.1007/978-3-642-31513-8_34

  48. S. Vaidyanathan, S. Sampath, Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control, in Advances in Digital Image Processing and Information Technology (2011), pp. 156–164. https://doi.org/10.1007/978-3-642-24055-3_16

  49. V.K. Yadav, G. Prasad, M. Srivastava, S. Das, Combination–combination phase synchronization among non-identical fractional order complex chaotic systems via nonlinear control. Int. J. Dyn. Control 7, 330–340 (2019). https://doi.org/10.1007/s40435-018-0432-0

    Article  Google Scholar 

  50. V.K. Yadav, V.K. Shukla, S. Das, A.Y.T. Leung, M. Srivastava, Function projective synchronization of fractional order satellite system and its stability analysis for incommensurate case. Chin. J. Phys. 56, 696–707 (2018). https://doi.org/10.1016/j.cjph.2018.01.008

    Article  Google Scholar 

  51. H.T. Yau, C.L. Chen, Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos Solitons Fractals 30, 709–718 (2006). https://doi.org/10.1016/j.chaos.2006.03.077

    Article  Google Scholar 

  52. L.A. Zadeh, Fuzzy Sets, Information and Control (1965)

    Google Scholar 

  53. L. Zhang, F. Zhu, Y. Hao, W. Pan, Rectangular-structure-based pose estimation method for non-cooperative rendezvous. Appl. Opt. 57, 6164–6173 (2018). https://doi.org/10.1364/ao.57.006164

    Article  Google Scholar 

  54. R. Zhang, Satellite Orbit Attitude Dynamics and Control (Univ. Aeronaut. Astronaut. Press, Beijing, 1998), p. 115

    Google Scholar 

  55. Y. Zhang, P. Huang, K. Song, Z. Meng, An angles-only navigation and control scheme for noncooperative rendezvous operations. IEEE Trans. Ind. Electron. 66, 8618–8627 (2019). https://doi.org/10.1109/TIE.2018.2884213

    Article  Google Scholar 

  56. B.Z. Zhou, X.F. Liu, G.P. Cai, Motion-planning and pose-tracking based rendezvous and docking with a tumbling target. Adv. Space Res. 65, 1139–1157 (2020). https://doi.org/10.1016/j.asr.2019.11.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Silahtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silahtar, O., Kutlu, F., Atan, Ö., Castillo, O. (2023). Rendezvous and Docking Control of Satellites Using Chaos Synchronization Method with Intuitionistic Fuzzy Sliding Mode Control. In: Castillo, O., Melin, P. (eds) Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design. Studies in Computational Intelligence, vol 1061. Springer, Cham. https://doi.org/10.1007/978-3-031-22042-5_10

Download citation

Publish with us

Policies and ethics