Skip to main content

Neural Order-First Split-Second Algorithm for the Capacitated Vehicle Routing Problem

  • Conference paper
  • First Online:
Book cover Optimization and Learning (OLA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1684))

Included in the following conference series:

  • 376 Accesses

Abstract

Modern machine learning, including deep learning models and reinforcement learning techniques, have proven effective for solving difficult combinatorial optimization problems without relying on handcrafted heuristics. In this work, we present NOFSS, a Neural Order-First Split-Second deep reinforcement learning approach for the Capacity Constrained Vehicle Routing Problem (CVRP). NOFSS consists of a hybridization between a deep neural network model and a dynamic programming shortest path algorithm (Split). Our results, based on intensive experiments with several neural network model architectures, show that such a two-step hybridization enables learning of implicit algorithms (i.e. policies) producing competitive solutions for the CVRP.

S. Harispe—This work used HPC resources of IDRIS (allocation 2022-AD011011309R2) made by GENCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A tour is the ordering of clients the vehicle will visit before returning back to the depot. The optimal number of tours will therefore depend on client’s demands and vehicle capacity.

  2. 2.

    Our implementation and results will be available on the following repository https://github.com/AYaddaden/NOFSS.

  3. 3.

    \(softmax(s_i) = \frac{exp(s_i)}{\sum _{j=1}^{K}exp(s_j)}\).

  4. 4.

    https://github.com/vidalt/HGS-CVRP.

  5. 5.

    https://github.com/yorak/VeRyPy.

References

  1. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290, 405–421 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. arXiv:1506.03134 (2015)

  3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv:1611.09940 (2016)

  4. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_12

    Chapter  Google Scholar 

  5. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv:1803.08475 (2018)

  6. Nazari, M., Oroojlooy, A., Snyder, L.V., Takáč, M.: Reinforcement learning for solving the vehicle routing problem. arXiv:1802.04240 (2018)

  7. Beasley, J.E.: Route first-cluster second methods for vehicle routing. Omega 11, 403–408 (1983)

    Article  Google Scholar 

  8. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 31, 1985–2002 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  10. Smith, K.A.: Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. Comput. 11, 15–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  12. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle-dispatch problem. Oper. Res. 22, 340–349 (1974)

    Article  MATH  Google Scholar 

  13. Ryan, D.M., Hjorring, C., Glover, F.: Extensions of the petal method for vehicle routeing. J. Oper. Res. Soc. 44, 289–296 (1993)

    Article  MATH  Google Scholar 

  14. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks 11, 109–124 (1981)

    Article  MathSciNet  Google Scholar 

  15. Hiquebran, D., Alfa, A., Shapiro, J., Gittoes, D.: A revised simulated annealing and cluster-first route-second algorithm applied to the vehicle routing problem. Eng. Optim. 22, 77–107 (1993)

    Article  Google Scholar 

  16. Vidal, T.: Hybrid genetic search for the CVRP: open-source implementation and swap* neighborhood. Comput. Oper. Res. 140, 105643 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Prins, C., Lacomme, P., Prodhon, C.: Order-first split-second methods for vehicle routing problems: a review. Transp. Res. Part C: Emerg. Technol. 40, 179–200 (2014)

    Article  Google Scholar 

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv:1710.10903 (2017)

  19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)

  20. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

  21. Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., Sun, Y.: Masked label prediction: unified message passing model for semi-supervised classification. arXiv:2009.03509 (2020)

  22. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. preprint arXiv:1409.1259 (2014)

  23. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  24. Rasku, J., Kärkkäinen, T., Musliu, N.: Meta-survey and implementations of classical capacitated vehicle routing heuristics with reproduced results. Toward Automatic Customization of Vehicle Routing Systems (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Yaddaden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yaddaden, A., Harispe, S., Vasquez, M. (2022). Neural Order-First Split-Second Algorithm for the Capacitated Vehicle Routing Problem. In: Dorronsoro, B., Pavone, M., Nakib, A., Talbi, EG. (eds) Optimization and Learning. OLA 2022. Communications in Computer and Information Science, vol 1684. Springer, Cham. https://doi.org/10.1007/978-3-031-22039-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22039-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22038-8

  • Online ISBN: 978-3-031-22039-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics