Skip to main content

Turkey Berry (Solanum torvum Sw. [Solanaceae]): An Overview of the Phytochemical Constituents, Nutritional Characteristics, and Ethnomedicinal Values for Sustainability

  • Living reference work entry
  • First Online:
Herbal Medicine Phytochemistry

Abstract

This chapter aims to discuss the phytomedicinal value of turkey berry (Solanum torvum Sw.). The shrub or small tree, turkey berry, is native to tropical and subtropical regions of Africa, Asia, and the Americas and has a long history of use in various culinary and traditional medicinal practices across different cultures. However, it is highly adaptable to different ecological niches, which allows it to grow in a variety of habitats, from coastal areas to highlands. The eggplant or tomato-like fruits of S. torvum have a unique aroma, sweet taste, and high phenolic contents that are essential to the dietary and medicinal properties of the plant. The plant is rich in vitamins, minerals, dietary fiber, protein, and secondary phytochemicals like flavonoids, alkaloids, tannins, saponins, essential oils, glycosides, and steroids. It is used to prepare curry and gravy dishes, stir-fries, pickles and chutneys, soups and stews, sauces and sambals, fried snacks, stuffed dishes, rice-based dishes, and other traditional dishes. The ethnobotanical values of S. torvum include rituals and symbolism, culinary traditions, economic uses, and traditional medicine. The plant is used to aid digestion as well as an anti-inflammatory, antioxidant, antimicrobial, immune modulation, cardiovascular health maintenance, wound healing, antidiabetic, weight management, and fever reduction. Clinical research on turkey berry is ongoing, and there is still much to learn and explore regarding the potential health benefits and therapeutic applications of the plant. Some herbal products containing turkey berry include herbal teas, herbal powders, herbal tinctures and extracts, capsules, herbal blends, and infusions. Turkey berry is generally considered safe for consumption when used in moderation as a food or traditional herbal remedy. However, like many botanicals, excessive or improper use can potentially lead to adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abbas I, Nakamura K, Hasym A (1985) Survivorship and fertility schedules of a sumatran epilachnine “species” feeding on Solanum torvum under laboratory conditions (Coleoptera: Coccinellidae). Appl Entomol Zool 20(1):50–55. https://doi.org/10.1303/aez.20.50

    Article  Google Scholar 

  2. Abhilash PC, Jamil S, Singh V, Singh A, Singh N, Srivastava SC (2008) Occurrence and distribution of hexachlorocyclohexane isomers in vegetation samples from a contaminated area. Chemosphere 72(1):79–86

    Article  CAS  PubMed  Google Scholar 

  3. Abraham JD, Sekyere EK, Gyamerah I (2022) Effect of boiling on the nutrient composition of Solanum Torvum. Int J Food Sci 2022:7539151. https://doi.org/10.1155/2022/7539151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adedeji O, Ajuwon OY, Babawale OO (2007) Foliar epidermal studies, organographic distribution and taxonomic importance of trichomes in the family Solanaceae. Int J Bot 3(3):276–282

    Article  Google Scholar 

  5. Agbemafle I, Francis S, Jensen H, Reddy M (2020) Drivers of perceptions about Turkey Berry and Palm Weevil larvae among Ghanaian women of reproductive age: a mixed methods approach. Curr Dev Nutr 4(Suppl 2):1284. https://doi.org/10.1093/cdn/nzaa059_001

    Article  PubMed Central  Google Scholar 

  6. Akinyemi DS, Oke SO (2013) Soil seedbank dynamics and regeneration in three different physiognomies in Shasha Forest Reserve in southwestern Nigeria. Res J Bot 15(2):76–85. https://doi.org/10.3923/rjb.2007.76.85

    Article  Google Scholar 

  7. Alfarabi M, Widyadhari G (2018) Toxicity test and phytochemical identification of Rimbang (Solanum torvum Swartz) extract. AL KAUNYAH: Journal of Biology 11(2):109–115

    Google Scholar 

  8. Aljabri M, Alharbi K, Alonazi M (2023) In vitro and in silico analysis of Solanum torvum fruit and methyl caffeate interaction with cholinesterases. Saudi J Biol Sci 30(10):103815. https://doi.org/10.1016/j.sjbs.2023.103815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Almaguel L, Machado LR, Caceres I (1984) New food-plants of the mite Polyphagotarsonemus latus. (Nuevas plantas hospedantes del ácaro Polyphagotarsonemus latus.). Ciencia Técnica Agric Protección Plantas 7(1):99–108

    Google Scholar 

  10. Ameh SJ, Tarfa FD, Ebeshi BU (2012) Traditional herbal management of sickle cell anemia: lessons from Nigeria. Anemia 2012:607436. https://doi.org/10.1155/2012/607436

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anon (1998) Florida exotic pest plant council’s 1997 List of Florida’s most invasive species

    Google Scholar 

  12. Arriaga ER, Hernández EM (1998) Resources foraged by Euglossa atroveneta (Apidae: Euglossinae) at Unión Juárez, Chiapas, Mexico. A palynological study of larval feeding. Apidologie 29(4):347–359. https://doi.org/10.1051/apido:19980405

    Article  Google Scholar 

  13. Arthan D, Kittakoop P, Esen A, Svasti J (2006) Furostanol glycoside 26-O-ß-glucosidase from the leaves of Solanum torvum. Phytochemistry 67(1):27–33

    Article  CAS  PubMed  Google Scholar 

  14. Barbosa QPS, da Camara CAG, Silva TMS, Ramos CS (2012) Chemical constituents of essential oils from Solanum torvum leaves, stems, fruits, and roots. Chem Nat Compd 48(4):698–699. https://doi.org/10.1007/s10600-012-0355-5

    Article  CAS  Google Scholar 

  15. Bari MA, Islam W, Khan AR, Mandal A (2010) Antibacterial and antifungal activity of Solanum torvum (Solanaceae). Int J Agric Biol 12(3):386–390

    Google Scholar 

  16. Blankespoor GW (1991) Slash-and-burn shifting agriculture and bird communities in Liberia. West Afr Biol Conserv 57(1):41–71. https://doi.org/10.1016/0006-3207(91)90107-K

    Article  Google Scholar 

  17. Bora U, Sahu A, Saikia AP, Ryakala VK, Goswami P (2007) Medicinal plants used by the people of Northeast India for curing malaria. Phytother Res 21(8):800–804. https://doi.org/10.1002/ptr.2178

    Article  PubMed  Google Scholar 

  18. Breedlove DE (1998) Floristic list for Mexico. IV. Flora of Chiapas. http://www.ibiologia.unam.mx/publicaciones/lfl4

  19. Buathong R, Duangsrisai S (2023) Plant ingredients in Thai food: a well-rounded diet for natural bioactive associated with medicinal properties. PeerJ 11:e14568. https://doi.org/10.7717/peerj.14568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cantelo WW, Smith JS Jr, Baumhover AH, Stanley JM, Henneberry TJ (1972) Suppression of an isolated population of the tobacco hornworm with blacklight traps unbaked or baited with virgin female moths. Environ Entomol 1(2):253–258

    Article  Google Scholar 

  21. Carabot Cuervo A, Blunden G, Patel AV (1991) Chlorogenone and neochlorogenone from the unripe fruits of Solanum torvum. Phytochemistry 30(4):1339–1341. https://doi.org/10.1016/S0031-9422(00)95233-6

    Article  Google Scholar 

  22. Chadhokar PA (1976) Control of devil’s fig (Solanum torvum Sw.) in tropical pastures. PANS 22(1):75–78

    Article  CAS  Google Scholar 

  23. Challa S, Buenafe OEM, Queiroz EF, Maljevic S, Marcourt L, Bock M, Kloeti W, Dayrit FM, Harvey AL, Lerche H, Esguerra CV, de Witte PAM, Wolfender J-L, Crawford AD (2014) Zebrafish bioassay-guided microfractionation identifies anticonvulsant steroid glycosides from the Philippine medicinal plant Solanum torvum. ACS Chem Neurosci 5(10):993–1004. https://doi.org/10.1021/cn5001342

    Article  CAS  Google Scholar 

  24. Chanchaichaovivat A, Ruenwongsa P, Panijipan B (2007) Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol Control 42(3):326–335

    Article  Google Scholar 

  25. Chidambaram K, Alqahtani T, Alghazwani Y, Aldahish A, Annadurai S, Venkatesan K, Dhandapani K, Thilagam E, Venkatesan K, Paulsamy P, Vasudevan R, Kandasamy G (2022) Medicinal plants of Solanum species: the promising sources of phyto-insecticidal compounds. J Trop Med 2022:4952221. https://doi.org/10.1155/2022/4952221

    Article  PubMed  PubMed Central  Google Scholar 

  26. Clain C, da Silva D, Fock I, Vaniet S, Carmeille A, Gousset C, Sihachakr D, Luisetti J, Kodja H, Besse P (2004) RAPD genetic homogeneity and high levels of bacterial wilt tolerance in Solanum torvum Sw. (Solanaceae) accessions from Reunion Island. Plant Sci 166(6):1533–1540. https://doi.org/10.1016/j.plantsci.2004.02.006

    Article  CAS  Google Scholar 

  27. Coe FG, Anderson GJ (2005) Snakebite ethnopharmacopoeia of eastern Nicaragua. J Ethnopharmacol 96(1/2):303–323. https://doi.org/10.1016/j.jep.2004.09.026

    Article  PubMed  Google Scholar 

  28. Colmenares AP, Rojas LB, Mitaine-Offer AC, Pouységu L, Quideau S, Miyamoto T, Tanaka C, Paululat T, Usubillaga A, Lacaille-Dubois MA (2013) Steroidal saponins from the fruits of Solanum torvum. Phytochemistry 86:137–143. https://doi.org/10.1016/j.phytochem.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  29. Comeau PL (1993) The vegetation surrounding Mud Volcanoes in Trinidad. Living World J Trinidad Tobago Field Nat Club 17–27. http://ttfnc.org/livingworld/index.php/lwj/article/view/366

  30. Corlett RT (1988) The naturalized flora of Singapore. J Biogeogr 15(4):657–663. https://doi.org/10.2307/2845443

    Article  Google Scholar 

  31. Corlett RT (2005) Interactions between birds, fruit bats and exotic plants in urban Hong Kong. South China Urban Ecosyst 8(3):275–283. https://doi.org/10.1007/s11252-005-3260-x

    Article  Google Scholar 

  32. Deb D, Sarkar A, Barma BD, Datta BK, Majumdar K (2013) Wild edible plants and their utilization in traditional recipes of Tripura, Northeast India. Adv Biol Res 7(5):203–211. https://doi.org/10.5829/idosi.abr.2013.7.5.11895

    Article  Google Scholar 

  33. Dong CZ, Wu QZ, Xu HH, Xie CL, Rui W (2011) Insecticidal activity of the extracts from 40 species of plants in Hainan Island against Musca domestica Linnaeus. Acta Agric Univ Jiangxiensis 33(3):476–481

    Google Scholar 

  34. Dowsett-Lemaire F (1988) The forest vegetation of Mt Mulanje (Malawi): a floristic and chorological study along an altitudinal gradient (650–1950 m). Bull Jardin Bot Natl Belg 58(1–2):77–107. https://doi.org/10.2307/3668402

    Article  Google Scholar 

  35. Fu L, Xu B-T, Xu X-R, Qin X-S, Gan R-Y, Li H-B (2010) Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules 15(12):8602–8617. https://doi.org/10.3390/molecules15128602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gandhi GR, Ignacimuthu S, Paulraj MG (2011) Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food Chem Toxicol 49(11):2725–2733. https://doi.org/10.1016/j.fct.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  37. Garibaldi A, Minuto A, Gullino ML (2005) Verticillium wilt incited by Verticillium dahliae in eggplant grafted on Solanum torvum in Italy. Plant Dis 89(7):777

    PubMed  Google Scholar 

  38. Gautier-Hion A, Emmons LH, Dubost G (1980) A comparison of the diets of three major groups of primary consumers of Gabon (primates, squirrels and ruminants). Oecologia 45(2):182–189. https://doi.org/10.1007/BF00346458

    Article  CAS  PubMed  Google Scholar 

  39. Ge H, Ma L (2007) Baseline survey, assessment and protection for eco-environment in a proposed gold mining area in Lannigou, Guizhou Provine, China. Int J Min Reclam Environ 21(3):173–184

    Article  Google Scholar 

  40. Götz M, Winter S (2016) Diversity of Bemisia tabaci in Thailand and Vietnam and indications of species replacement. J Asia Pac Entomol 19(2):537–543. https://doi.org/10.1016/j.aspen.2016.04.017

    Article  Google Scholar 

  41. Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D (2005) Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci 168(2):319–327. https://doi.org/10.1016/j.plantsci.2004.07.034

    Article  CAS  Google Scholar 

  42. Govender N, Zulkifli NS, Badrul Hisham NF, Ab Ghani NS, Mohamed-Hussein ZA (2022) Pea eggplant (Solanum torvum Swartz) is a source of plant food polyphenols with SARS-CoV inhibiting potential. PeerJ 10:e14168. https://doi.org/10.7717/peerj.14168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest 3(1):394–399

    CAS  Google Scholar 

  44. Grice AC, Lawes RA, Abbott BN, Nicholas DM, Whiteman LV (2004) How abundant and widespread are riparian weeds in the dry tropics of north-east Queensland? In: Sindel BM, Johnson SB (eds) Weed management: balancing people, planet, profit. 14th Australian Weeds Conference, Wagga Wagga, New South Wales, Australia, 6–9 September 2004: papers and proceedings. Weed Society of New South Wales, Sydney, pp 173–175

    Google Scholar 

  45. Ha C, Coombs S, Revill PA, Harding RM, Vu M, Dale JL (2008) Design and application of two novel degenerate primer pairs for the detection and complete genomic characterization of potyviruses. Arch Virol 153(1):25–36. https://doi.org/10.1007/s00705-007-1053-7

    Article  CAS  PubMed  Google Scholar 

  46. Hancock IR, Henderson CP (1988) Flora of the Solomon Islands. Research bulletin no 7. Dodo Creek Research Station, Honiara

    Google Scholar 

  47. Hapairai LK, Joseph H, Sang MAC, Melrose W, Ritchie SA, Burkot TR, Sinkins SP, Bossin HC (2013) Field evaluation of selected traps and lures for monitoring the filarial and arbovirus vector, Aedes polynesiensis (Diptera: Culicidae), in French Polynesia. J Med Entomol 50(4):731–739. https://doi.org/10.1603/ME12270

    Article  PubMed  Google Scholar 

  48. Hayta S, Polat R, Selvi S (2014) Traditional uses of medicinal plants in Elazig (Turkey). J Ethnopharmacol 154:613–623. https://doi.org/10.1016/j.jep.2014.04.026

    Article  PubMed  Google Scholar 

  49. Heine H (1963) Solanaceae. In: Hutchison J, Dalziel JM, Hepper FN (eds) Flora of West Tropical Africa, vol 2. Crown Agents, London, pp 325–335

    Google Scholar 

  50. Henty EE, Pritchard GH (1975) Weeds of New Guinea and their control. In: Weeds of New Guinea and their control. Department of Forests, Division of Botany, Lae. 180 pp

    Google Scholar 

  51. Hnatiuk RJ (1990) Census of Australian vascular plants. Australian Flora and Fauna series number 11. Australian Government Publishing Service, Canberra. xvi + 650 pp

    Google Scholar 

  52. Holm LG, Pancho JV, Herberger JP, Plucknett DL (1991) A geographic atlas of world weeds. Krieger Publishing Co, Malabar. 391 pp

    Google Scholar 

  53. Hopkins MS, Graham AW (1983) The species composition of soil seed banks beneath lowland tropical rainforests in North Queensland, Australia. Biotropica 15(2):90–99. https://doi.org/10.2307/2387950

    Article  Google Scholar 

  54. Hossain M (1973) Observations on stylar heteromorphism in Solanum torvum Sw. (Solanaceae). Bot J Linn Soc 66(4):291–301. https://doi.org/10.1111/j.1095-8339.1973.tb02176.x

    Article  Google Scholar 

  55. Hsu Y-M, Weng J-R, Huang T-J, Lai C-H, Su C-H, Chou C-H (2010) Solanum torvum inhibits Helicobacter pylori growth and mediates apoptosis in human gastric epithelial cells. Oncol Rep 23:1401–1405. https://doi.org/10.3892/or_00000777

    Article  PubMed  Google Scholar 

  56. Imarhiagbe O, Ogwu MC (2022) Sacred groves in the Global South: a panacea for sustainable biodiversity conservation. In: Izah SC (ed) Biodiversity in Africa: potentials, threats and conservation. Sustainable development and biodiversity, vol 29. Springer, Singapore, pp 525–546. https://doi.org/10.1007/978-981-19-3326-4_20

    Chapter  Google Scholar 

  57. Irakoze ML, Wafula EN, Owaga E (2021) Potential role of African fermented indigenous vegetables in maternal and child nutrition in Sub-Saharan Africa. Int J Food Sci 2021:3400329. https://doi.org/10.1155/2021/3400329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Isahaque NMM, Chaudhuri RP (1983) A new alternate host plant of brinjal shoot and fruit borer Leucinodes orbonalis Guen. Assam J Res Assam Agric Univ 4(1):83–85

    Google Scholar 

  59. Isahaque NMM, Chaudhuri RP (1985) A new alternate host plant of brinjal shoot and fruit borer Leucinodes orbonalis Guen. Assam J Res Assam Agric Univ 4(1):83–85

    Google Scholar 

  60. Israf DA, Lajis NH, Somchit MN, Sulaiman MR (2004) Enhancement of ovalbumin-specific IgA responses via oral boosting with antigen co-administered with an aqueous Solanum torvum extract. Life Sci 75(4):397–406. https://doi.org/10.1016/j.lfs.2003.10.038

    Article  CAS  PubMed  Google Scholar 

  61. Ivens GW, Moody K, Egunjobi JK (1978) West African weeds. Oxford University Press, Ibadan, pp 178–179

    Google Scholar 

  62. Janzen DH (1966) Notes on the behavior of the carpenter bee Xylocopa fimbriata in Mexico (Hymenoptera: Apoidea). J Kansas Entomol Soc 39(4):633–641. https://www.jstor.org/stable/25083568

    Google Scholar 

  63. Jena AK, Deuri R, Sharma P, Singh SP (2018) Underutilized vegetable crops and their importance. J Pharmacogn Phytochem 7(5):402–407

    CAS  Google Scholar 

  64. Kellman MC (1973) Dry season weed communities in the upper Belize valley. J Appl Ecol 10(3):683–694. https://doi.org/10.2307/2401862

    Article  Google Scholar 

  65. Kelly DL, Dickinson TA (1985) Local names for vascular plants in the John Crow Mountains. Jam Econ Bot 39(3):346–362. https://doi.org/10.1007/BF02858806

    Article  Google Scholar 

  66. Khunbutsri D, Naimon N, Satchasataporn K, Inthong N, Kaewmongkol S, Sutjarit S, Setthawongsin C, Meekhanon N (2022) Antibacterial activity of Solanum torvum leaf extract and its synergistic effect with oxacillin against methicillin-resistant staphyloccoci isolated from dogs. Antibiotics 11(3):302. https://doi.org/10.3390/antibiotics11030302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kimpouni V (2008) First data on the floristic diversity of Aubeville forest (Congo – Brazzaville). (Premières données sur la diversité floristique de la forêt d’Aubeville (Congo – Brazzaville).). Syst Geogr Plants 78(1):47–62

    Google Scholar 

  68. Koffuor GA, Amoateng P, Andey TA (2011) Immunomodulatory and erythropoietic effects of aqueous extract of the fruits of Solanum torvum Swartz (Solanaceae). Pharm Res 3(2):130–134. https://doi.org/10.4103/0974-8490.81961

    Article  Google Scholar 

  69. Lee CL, Hwang TL, He WJ, Tsai YH, Yen CT, Yen HF, Chen CJ, Chang WY, Wu YC (2013) Anti-neutrophilic inflammatory steroidal glycosides from Solanum torvum. Phytochemistry 95:315–321. https://doi.org/10.1016/j.phytochem.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  70. Lely N (2016) Antimicrobial activity test of Turkey berry leaf extract (Solanum torvum Swartz) against Staphylococcus aureus, Escherichia coli and fungi Candida albicans. Jurnal ilmiah bakti farmasi 1(2):55–58

    Google Scholar 

  71. Li JS, Zhang L, Huang C, Guo FJ, Li YM (2014) Five new cyotoxic steroidal glycosides from the fruits of Solanum torvum. Fitoterapia 93:209–215. https://doi.org/10.1016/j.fitote.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  72. Liquido NJ, Harris EJ, Dekker LA (1994) Ecology of Bactrocera latifrons (Diptera: Tephritidae) populations: host plants, natural enemies, distribution, and abundance. Ann Entomol Soc Am 87(1):71–84. https://doi.org/10.1093/aesa/87.1.71

    Article  Google Scholar 

  73. Lobova TA, Mori SA (2004) Epizoochorous dispersal by bats in French Guiana. J Trop Ecol 20(5):581–582. https://doi.org/10.1017/S0266467404001634

    Article  Google Scholar 

  74. Lorenzi H (1982) Weeds of Brazil, terrestrial and aquatic, parasitic, poisonous and medicinal (Plantas daninhas de Brasil, terrestres, aquaticas, parasitas, toxicas e medicinais). H. Lorenzi, Nova Odessa. 425 pp.

    Google Scholar 

  75. Lu YY, Luo JG, Huang XF, Kong LY (2009) Four new steroidal glycosides from Solanum torvum and their cytotoxic activities. Steroids 74(1):95–101. https://doi.org/10.1016/j.steroids.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  76. MacKee HS (1985) Les Plantes Introduites et Cultivees en Nouvelle-Caledonie. Volume hors series, Flore de la Nouvelle-Caledonie et Dependances. Museum Nationelle d’Histoire Naturelle, Paris

    Google Scholar 

  77. Mahapatra AK, Mishra S, Basak UC, Panda PC (2012) Nutrient analysis of some selected wild edible fruits of deciduous forests of India: an explorative study towards non conventional bio-nutrition. Adv J Food Sci Technol 4(1):15–21

    CAS  Google Scholar 

  78. Mahmood U, Agrawal PK, Thakur RS (1985) Torvonin-A, a spirostane saponin from Solanum torvum leaves. Phytochemistry 24(10):2456–2457. https://doi.org/10.1016/S0031-9422(00)83069-1

    Article  CAS  Google Scholar 

  79. Maro LAC, Pio R, Guedes MNS, Abreu CMP, Moura PHA (2014) Environmental and genetic variation in the post-harvest quality of raspberries in subtropical areas in Brazil. Acta Sci 36(3):323–328

    Google Scholar 

  80. Matsuzoe N, Aida H, Hanada K, Ali M, Okubo H, Fujieda K (1996) Fruit quality of tomato plants grafted on Solanum rootstocks. J Jpn Soc Hortic Sci 65(1):73–80. https://doi.org/10.2503/jjshs.65.73

    Article  Google Scholar 

  81. Mavoungou JF, Picard N, Kohagne LT, M’Batchi B, Gilles J, Duvallet G (2013) Spatio-temporal variation of biting flies, Stomoxys spp. (Diptera: Muscidae), along a man-made disturbance gradient, from primary forest to the city of Makokou (North-East, Gabon). Med Vet Entomol 27(3):339–345. https://doi.org/10.1111/j.1365-2915.2012.01064.x

    Article  PubMed  Google Scholar 

  82. Muhammad A, Sheeba F (2011) Pharmacognostical studies and evaluation of total phenolic and flavonoid contents of traditionally utilized fruits of Solanum torvum Sw. Indian J Nat Prod Resour 2(2):218–224

    Google Scholar 

  83. Myster RW, Walker LR (1997) Plant successional pathways on Puerto Rican landslides. J Trop Ecol 13(2):165–173. https://doi.org/10.1017/S0266467400010397

    Article  Google Scholar 

  84. Narikawa T, Sakata Y, Komochi S, Melor R, Heng CK, Jumali S (1988) Collection of Solanaceous plants in Malaysia and screening for disease resistance. Jpn Agric Res Q 22(2):101–106

    Google Scholar 

  85. Nayak SK, Satapathy KB (2015) Diversity, uses and origin of invasive alien plants in Dhenkanal district of Odisha, India. Int Res J Biol Sci 4(2):21–27. http://www.isca.in/IJBS/Archive/v4/i2/4.ISCA-IRJBS-2014-223.pdf

    Google Scholar 

  86. Ndebia EJ, Kamgang R, Nkeh-ChungagAnye BN (2006) Analgesic and anti-inflammatory properties of aqueous extract from leaves of Solanum torvum (Solanaceae). Afr J Tradit Complement Alternat Med 4(2):240–244. https://doi.org/10.4314/ajtcam.v4i2.31214

    Article  CAS  Google Scholar 

  87. Ndebia EJ, Kamgang R, Nkeh-ChungagAnye BN (2007) Analgesic and anti-inflammatory properties of aqueous extract from leaves of Solanum torvum (Solanaceae). Afr J Tradit Complement Altern Med 4(2):240–244

    Google Scholar 

  88. Nguelefack TB, Feumebo CB, Ateufack G, Watcho P, Tatsimo S, Atsamo AD, Tane P, Kamanyi A (2008) Anti-ulcerogenic properties of the aqueous and methanol extracts from the leaves of Solanum torvum Swartz (Solanaceae) in rats. J Ethnopharmacol 119(1):135–140. https://doi.org/10.1016/j.jep.2008.06.008

    Article  PubMed  Google Scholar 

  89. Nurit-Silva K, Costa-Silva R, Coelho VPM, de Agra MF (2011) A pharmacobotanical study of vegetative organs of Solanum torvum. Rev Bras 21(4):568–574. https://doi.org/10.1590/S0102-695X2011005000101

    Article  Google Scholar 

  90. Nwizugbo KC, Ogwu MC, Eriyamremu GE, Ahana CM (2023) Alterations in energy metabolism, total protein, uric and nucleic acids in African sharptooth catfish (Clarias gariepinus Burchell.) exposed to crude oil and fractions. Chemosphere 316:137778. https://doi.org/10.1016/j.chemosphere.2023.137778

    Article  CAS  PubMed  Google Scholar 

  91. Ogwu MC (2019a) Lifelong consumption of plant-based GM foods: is it safe? In: Papadopoulou P, Misseyanni A, Marouli C (eds) Environmental exposures and human health challenges. IGI Global, Pennsylvania, pp 158–176. https://doi.org/10.4018/978-1-5225-7635-8.ch008

    Chapter  Google Scholar 

  92. Ogwu MC (2019b) Towards sustainable development in Africa: the challenge of urbanization and climate change adaptation. In: Cobbinah PB, Addaney M (eds) The geography of climate change adaptation in urban Africa. Springer Nature, Cham, pp 29–55. https://doi.org/10.1007/978-3-030-04873-0_2

    Chapter  Google Scholar 

  93. Ogwu MC (2019c) Understanding the composition of food waste: an “-Omics” approach to food waste management. In: Gunjal AP, Waghmode MS, Patil NN, Bhatt P (eds) Global initiatives for waste reduction and cutting food loss. IGI Global, Hershey, pp 212–236. https://doi.org/10.4018/978-1-5225-7706-5.ch011

    Chapter  Google Scholar 

  94. Ogwu MC (2023) Local food crops in Africa: sustainable utilization, threats, and traditional storage strategies. In: Izah SC, Ogwu MC (eds) Sustainable utilization and conservation of Africa’s biological resources and environment. Sustainable development and biodiversity, vol 888. Springer, Singapore, pp 353–374. https://doi.org/10.1007/978-981-19-6974-4_13

    Chapter  Google Scholar 

  95. Ogwu MC, Osawaru ME (2022) Traditional methods of plant conservation for sustainable utilization and development. In: Izah SC (ed) Biodiversity in Africa: potentials, threats and conservation. Sustainable development and biodiversity, vol 29. Springer, Singapore, pp 451–472. https://doi.org/10.1007/978-981-19-3326-4_17

    Chapter  Google Scholar 

  96. Ogwu MC, Osawaru ME (2023) Disease outbreaks in ex-situ plant conservation and potential management strategies. In: Izah SC, Ogwu MC (eds) Sustainable utilization and conservation of Africa’s biological resources and environment. Sustainable development and biodiversity, vol 888. Springer, Singapore, pp 497–518. https://doi.org/10.1007/978-981-19-6974-4_18

    Chapter  Google Scholar 

  97. Ogwu MC, Osawaru ME, Aiwansoba RO, Iroh RN (2016a) Ethnobotany and collection of West African Okra [Abelmoschus caillei (A. Chev.) Stevels] germplasm in some communities in Edo and Delta States, Southern Nigeria. Borneo J Resour Sci Technol 6(1):25–36. https://doi.org/10.33736/bjrst.212.2016

    Article  Google Scholar 

  98. Ogwu MC, Osawaru ME, Aiwansoba RO, Iroh RN (2016b) Status and prospects of vegetables in Africa. In: Borokini IT, Babalola FD (eds) Conference proceedings of the joint biodiversity conservation conference of Nigeria Tropical Biology Association and Nigeria Chapter of Society for Conservation Biology on MDGs to SDGs: toward sustainable biodiversity conservation in Nigeria. University of Ilorin, Nigeria, pp 47–57

    Google Scholar 

  99. Ogwu MC, Osawaru ME, Obahiagbon GE (2017) Ethnobotanical survey of medicinal plants used for traditional reproductive care by Usen people of Edo State, Nigeria. Malaya J Biosci 4(1):17–29

    Google Scholar 

  100. Ogwu MC, Osawaru ME, Owie MO (2023a) Effects of storage at room temperature on the food components of three Cocoyam species (Colocasia esculenta, Xanthosoma atrovirens, and X. sagittifolium). Food Stud Interdiscip J 13(2):59–83. https://doi.org/10.18848/2160-1933/CGP/v13i02/59-83

    Article  Google Scholar 

  101. Ogwu MC, Osawaru ME, Amodu E, Osamo F (2023b) Comparative morphology, anatomy, and chemotaxonomy of two Cissus Linn. species. Braz J Bot 46:397. https://doi.org/10.1007/s40415-023-00881-0

    Article  Google Scholar 

  102. Osawaru ME, Ogwu MC (2014) Ethnobotany and germplasm collection of two genera of cocoyam (Colocasia [Schott] and Xanthosoma [Schott], Araceae) in Edo State Nigeria. Sci Technol Arts Res J 3(3):23–28. https://doi.org/10.4314/star.v3i3.4

    Article  Google Scholar 

  103. Osawaru ME, Ogwu MC, Omoigui ID, Aiwansoba RO, Kevin A (2016) Ethnobotanical survey of vegetables eaten by Akwa Ibom people residing in Benin City, Nigeria. Univ Benin J Sci Technol 4(1):70–93

    Google Scholar 

  104. Ovuru KF, Izah SC, Ogidi OI, Imarhiagbe I, Ogwu MC (2023) Slaughterhouse facilities in developing nations: sanitation and hygiene practices, microbial contamination and sustainable management system. Food Sci Biotechnol. https://doi.org/10.1007/s10068-023-01406-x

  105. Parham JW (1958) The weeds of Fiji. Bulletin Fiji Department of Agriculture, 35. Government Press, Suava

    Google Scholar 

  106. Peregrine WTH, Kbin A (1982) Grafting – a simple technique for overcoming bacterial wilt in tomato. Trop Pest Manage 28(1):71–76

    Article  Google Scholar 

  107. Pi JS (1977) Contribution to the study of alimentation of lowland gorillas in the natural state, in Río Muni, Republic of Equatorial Guinea (West Africa). Primates 18(1):183–204

    Article  Google Scholar 

  108. Rahman MA, Sultana R, Emran T, Islam MS, Rahman MA, Chakma JS, Harun-ur-Rashid, Hasan CMM (2013) Effects of organic extracts of six Bangladeshi plants on in vitro thrombolysis and cytotoxicity. BMC Complement Altern Med 13:25. http://www.biomedcentral.com/1472-6882/13/25

    Article  PubMed  PubMed Central  Google Scholar 

  109. Raimondo FM, Orlando A (1978) First finding in Italy of Solanum torvum Sw. Inform Bot Ital 10(1):43–45

    Google Scholar 

  110. Ramamurthy CH, Subastri A, Suyavaran A, Subbaiah KC, Valluru L, Thirunavukkarasu C (2016) Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation. Environ Sci Pollut Res Int 23(8):7919–7929. https://doi.org/10.1007/s11356-016-6044-3

    Article  CAS  PubMed  Google Scholar 

  111. Rammohan M, Reddy CS (2011) Anti inflammatory activity of the seed and fruit wall extracts of Solanum torvum. Hygeia J Drugs Med 2(2):54–58

    Google Scholar 

  112. Sabatino L, Palazzolo E, D’Anna F (2013) Grafting suitability of Sicilian eggplant ecotypes onto Solanum torvum: fruit composition, production and phenology. J Food Agric Environ 11:1195–1200

    CAS  Google Scholar 

  113. Sajeev KK, Sasidharan N (1997) Ethnobotanical observations on the tribals of Chinnar Wildlife Sanctuary. Anc Sci Life 16(4):284–292. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331175/

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sakthivel P, Karuppuchamy P, Kalyanasundaram M, Srinivasan T (2012) Host plants of invasive papaya mealybug, Paracoccus marginatus (Williams and Granara de Willink) in Tamil Nadu. Madras Agric J 99(7/9):615–619

    Google Scholar 

  115. Sánchez JA, Montejo L, Gamboa A, Albert-Puentes D, Hernández F (2015) Germination and dormancy of shrubs and climbing plants of the evergreen forest of Sierra del Rosario, Cuba (Germinación y dormancia de arbustos y trepadoras del bosque siempreverde de la Sierra del Rosario, Cuba). Pastos Forrajes 38(1):11–28

    Google Scholar 

  116. Sato K, Uehara T, Holbein J, Sasaki-Sekimoto Y, Gan P, Bino T, Yamaguchi K, Ichihashi Y, Maki N, Shigenobu S, Ohta H, Franke RB, Siddique S, Grundler FMW, Suzuki T, Kadota Y, Shirasu K (2021) Transcriptomic analysis of resistant and susceptible responses in a new model root-knot nematode infection system using Solanum torvum and Meloidogyne arenaria. Front Plant Sci 12:680151. https://doi.org/10.3389/fpls.2021.680151

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shetty KD, Reddy DDR (1985) Resistance in Solanum species to root-knot nematode Meloidogyne incognita. Indian J Nematol 15:230

    Google Scholar 

  118. Singh PK, Gopalakrishnan TR (1997) Grafting for wilt resistance and productivity in brinjal (Solanum melongena L.). Hortic J 10(2):57–64. 5 ref

    Google Scholar 

  119. Singh AK, Kamal (1985) Fungi of Gorakhpur XXXVI. Indian J Mycol Plant Pathol 15(2):121–124

    Google Scholar 

  120. Sirait N (2009) Eggplant Cepoka (Solanum torvum) Herbs that are efficacious as medicine. Rep Res Dev Ind Plants 15(1):11–13

    Google Scholar 

  121. Smith SW, Giesbrecht E, Thompson M, Nelson LS, Hoffman RS (2008) Solanaceous steroidal glycoalkaloids and poisoning by Solanum torvum, the normally edible susumber berry. Toxicon 52(6):667–676. https://doi.org/10.1016/j.toxicon.2008.07.016

    Article  CAS  PubMed  Google Scholar 

  122. Space JC, Flynn T (2002) Report to the Government of The Cook Islands on invasive plant species of environmental concern. USAL USDA Forest Service, Honolulu. 146 pp

    Google Scholar 

  123. Symon DE (1981) Solanum in Australia. J Adelaide Bot Gard 4:115–116

    Google Scholar 

  124. Takoukam Kamla A, Gomes DGE, Beck CA, Keith-Diagne LW, Hunter ME, Francis-Floyd R, Bonde RK (2021) Diet composition of the African manatee: spatial and temporal variation within the Sanaga River Watershed, Cameroon. Ecol Evol 11(22):15833–15845. https://doi.org/10.1002/ece3.8254

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tsouh Fokou PV, Nyarko AK, Appiah-Opong R, Tchokouaha Yamthe LR, Ofosuhene M, Boyom FF (2015) Update on medicinal plants with potency on Mycobacterium ulcerans. Biomed Res Int 2015:917086. https://doi.org/10.1155/2015/917086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vahapoglu B, Erskine E, Gultekin Subasi B, Capanoglu E (2021) Recent studies on berry bioactives and their health-promoting roles. Molecules 27(1):108. https://doi.org/10.3390/molecules27010108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang ZR (1990) Farmland weeds in China. Agricultural Publishing House, Beijing

    Google Scholar 

  128. Waterhouse DF (1997) The major invertebrate pests and weeds of agriculture and plantation forestry in the southern and western Pacific. ACIAR monograph no 44. Australian Centre for International Agricultural Research, Canberra. 93 pp

    Google Scholar 

  129. Westbrooks RG, Eplee RE (1988) Federal noxious weeds in Florida. In: Proceedings of the 42nd annual meeting of the Southern Weed Science Society, pp 316–321

    Google Scholar 

  130. Whistler WA (1983) Weed handbook of Western Polynesia. Schriftenreihe der Deutschen Gesellschaft fnr Technische Zusammenarbeit, 157 pp

    Google Scholar 

  131. Wiart C, Mogana S, Khalifah S, Mahan M, Ismail S, Buckle M, Narayana AK, Sulaiman M (2004) Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia 75(1):68–73

    Article  CAS  PubMed  Google Scholar 

  132. Yang X, Cheng YF, Deng C, Ma Y, Wang ZW, Chen XH, Xue LB (2014) Comparative transcriptome analysis of eggplant (Solanum melongena L.) and Turkey berry (Solanum torvum Sw.): phylogenomics and disease resistance analysis. BMC Genomics 15(1):412. https://doi.org/10.1186/1471-2164-15-412

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yang X, Deng C, Zhang Y, Cheng Y, Huo Q, Xue L (2015) The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.). Int J Mol Sci 16(4):7608–7626. https://doi.org/10.3390/ijms16047608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang M, Zhang H, Tan J, Huang S, Chen X, Jiang D, Xiao X (2021) Transcriptome analysis of eggplant root in response to root-knot nematode infection. Pathogens 10(4):470. https://doi.org/10.3390/pathogens10040470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang H, Chen H, Tan J, Huang S, Chen X, Dong H, Zhang R, Wang Y, Wang B, Xiao X, Hong Z, Zhang J, Hu J, Zhang M (2023) The chromosome-scale reference genome and transcriptome analysis of Solanum torvum provides insights into resistance to root-knot nematodes. Front Plant Sci 14:1210513. https://doi.org/10.3389/fpls.2023.1210513

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Chidozie Ogwu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ogwu, M.C., Dunkwu-Okafor, A., Omakor, I.A., Izah, S.C. (2024). Turkey Berry (Solanum torvum Sw. [Solanaceae]): An Overview of the Phytochemical Constituents, Nutritional Characteristics, and Ethnomedicinal Values for Sustainability. In: Izah, S.C., Ogwu, M.C., Akram, M. (eds) Herbal Medicine Phytochemistry. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-21973-3_73-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21973-3_73-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21973-3

  • Online ISBN: 978-3-031-21973-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics