Skip to main content

Herbal Medicine for Health Management and Disease Prevention

  • Living reference work entry
  • First Online:
Herbal Medicine Phytochemistry

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 27 Accesses

Abstract

Herbal remedies have been developed and used since the dawn of human civilization. Herbal medicines preponderantly deal with the medicinal application of a broad spectrum of plant regimes for health management and disease prevention. Wider varieties of algae, fungus, and lichen exudates have also been considered for herbal medicine using traditional methods such as infusion, decoction, maceration, distillation, expression, fractionation, and purification. However, conventional channels are insufficiently successful to generate significant demand for industrial-scale manufacture of herbal medicines. Systems synthetic biology and metabolic engineering have proved important in boosting productivity and cutting costs in the production of herbal drugs in this area. Additionally, there are regulatory and bioethical problems for health management and illness prevention at the current state of the art that make it difficult to mass-produce herbal medications. Based on this current scenario, current chapter deals with general outline on herbal medicines; its impact on health management and disease prevention; impact of system synthetic biology and metabolic engineering to accelerate herbal medicine development; and brief outline on regulatory-bioethical aspects upon usage of herbal medicine for health management and disease control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

4CL:

4-coenzyme ligase

ADRs:

Adverse drug reactions

AYUSH:

Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy

BEO:

Bergamot essential oil

BUN:

Blood urea nitrogen

CHS:

Chalcone synthase

CodR:

Codeinone reductase

DAC:

Department of Drugs and Cosmetics

DR:

Drug resistance

EGFR:

Estimated glomerular filtration rate

FDA:

Food and Drug Administration

HIV:

Human immunodeficiency virus

HSS:

Homospermidine synthase

ILK1β:

Suppresses interleukin-1β

IPA:

Interpretative phenomenological analysis

LCY:

Lycopene cyclase

LIS:

Linalool synthase

MPNPs:

Medicinal plant natural products

NHPR:

Natural Health Product Regulations

NHPs:

Natural health products

PKs:

Polyketides

RIAD:

RIα-binding peptide anchoring disruptor

RIDD:

RIα-binding peptide detector disruptor

RNAi:

RNA interference

SARP:

Streptomyces antibiotic regulatory protein

SDG:

Sustainable Development Goal

SIRT3:

NAD-dependent deacetylase sirtuin-3

TGA:

Therapeutic Goods Administration

UAE:

Urinary albumin excretion

UTIs:

Urinary tract infections

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. Karbwang J, Crawley FP, Na-Bangchang K, Maramba-Lazarte C (2019, 2019) Herbal medicine development: methodologies, challenges, and issues. Evid-Based Complementary Altern Med

    Google Scholar 

  2. Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liperoti R, Vetrano DL, Bernabei R, Onder G (2017) Herbal medications in cardiovascular medicine. J Am Coll Cardiol 69:1188–1199

    Article  PubMed  Google Scholar 

  4. Welz AN, Emberger-Klein A, Menrad K (2018) Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complement Altern Med 18:1–9

    Article  Google Scholar 

  5. Martvall A, Lindberg K (2022) Promotion of herbal medicines as a sustainable development strategy. Master’s thesis in Industrial Ecology, Gothenburg, Sweden

    Google Scholar 

  6. Alostad AH, Steinke DT, Schafheutle EI (2018) International comparison of five herbal medicine registration systems to inform regulation development: United Kingdom, Germany, United States of America, United Arab Emirates and Kingdom of Bahrain. Pharmaceut Med 32:39–49

    PubMed  PubMed Central  Google Scholar 

  7. Islam MN (2016) Developmental strategies of herbal medicine in the scientific world: research based approaches. Biosens J 5:141

    Google Scholar 

  8. Wang JF, Liu SS, Song ZQ, Xu TC, Liu CS, Hou YG, Huang R, Wu SH (2020) Naturally occurring flavonoids and isoflavonoids and their microbial transformation: a review. Mol 25:5112

    Article  CAS  Google Scholar 

  9. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211

    Article  CAS  PubMed  Google Scholar 

  10. Requena E, Alonso-Guirado L, Veloso J, Villarino M, Melgarejo P, Espeso EA, Larena I (2023) Comparative analysis of Penicillium genomes reveals the absence of a specific genetic basis for biocontrol in Penicillium rubens strain 212. Front Microbiol 13:1075327

    Article  PubMed  PubMed Central  Google Scholar 

  11. Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234

    Article  CAS  PubMed  Google Scholar 

  12. Zhanel GG, Homenuik K, Nichol K, Noreddin A, Vercaigne L, Embil J, Gin A, Karlowsky JA, Hoban DJ (2004) The glycylcyclines: a comparative review with the tetracyclines. Drugs 64:63–88

    Article  CAS  PubMed  Google Scholar 

  13. Chapman TM, Perry CM (2004) Everolimus. Drugs 64:861–872

    Article  CAS  PubMed  Google Scholar 

  14. Perry CM, Ibbotson T (2002) Biapenem. Drugs 62:2221–2234

    Article  CAS  PubMed  Google Scholar 

  15. Keating GM, Perry CM (2005) Ertapenem: a review of its use in the treatment of bacterial infections. Drugs 65:2151–2178

    Article  CAS  PubMed  Google Scholar 

  16. Sugiura T, Ariyoshi Y, Negoro S, Nakamura S, Ikegami H, Takada M, Yana T, Fukuoka M (2005) Phase I/II study of amrubicin, a novel 9-aminoanthracycline, in patients with advanced non-small-cell lung cancer. Investig New Drugs 23:331–337

    Article  CAS  Google Scholar 

  17. Courtwright DT (2001) Forces of habit: drugs and the making of the modern world. Harvard University Press, Cambridge/London. pub.1145802371

    Book  Google Scholar 

  18. Broggini M, Marchini S, Fontana E, Moneta D, Fowst C, Geroni C (2004) Brostallicin: a new concept in minor groove DNA binder development. Anti-Cancer Drugs 15:1–6

    Article  CAS  PubMed  Google Scholar 

  19. Méndez C, Salas JA (2001) Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol 19:449–456

    Article  PubMed  Google Scholar 

  20. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153

    Article  CAS  PubMed  Google Scholar 

  21. Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  PubMed  PubMed Central  Google Scholar 

  22. Islas JF, Acosta E, Zuca G, Delgado-Gallegos JL, Moreno-Treviño MG, Escalante B, Moreno-Cuevas JE (2020) An overview of neem (Azadirachta indica) and its potential impact on health. J Funct Foods 74:104171

    Article  CAS  Google Scholar 

  23. Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP (2020) Pharmacological update properties of Aloe vera and its major active constituents. Molecules 25:1324

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sharma N, Minocha N, Kushwaha N (2020) A review on the activities of Aloe vera and curry leaves. Int J Recent Sci Res 11:12–17

    Google Scholar 

  25. Rochkmana MJ, Widyawati MN (2018) The effectiveness of ginger and mint leaves decoction toward the frequency of emesis gravidarum. J KesehatIbu Dan Anak 12:119–123

    Google Scholar 

  26. Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B (2020) Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 11:01021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Widiastuti DP, Umar A (2022) The effect of biopesticide and combined fertilization in promoting plant health and growth of tomato cultivated on peat soil in West Kalimantan. J Trop Plant Pests Dis 22:68–76

    Article  Google Scholar 

  28. Ramadhanti IP, Lubis UH (2021) Ginger (Zingiber Officinale) and Mint Leaves (Mentha Piperrita L) Alleviate Emesis Gravidarum. Women, Midwives and Midwifery 1:37–45

    Article  Google Scholar 

  29. Anh NH, Kim SJ, Long NP, Min JE, Yoon YC, Lee EG, Kim M, Kim TJ, Yang YY, Son EY, Yoon SJ (2020) Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients 12:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bayan L, Koulivand PH, Gorji A (2014) Garlic: a review of potential therapeutic effects. Avicenna J Phytomed 4:1

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma N, Minocha N, Kushwaha N (2020) A review on the activities of Aloevera and curry leaves. Int J Rec Sci Res 11:12–17

    Google Scholar 

  32. Batool S, Khera RA, Hanif MA, Ayub MA, Memon S (2020) Curry leaf. In: Medicinal Plants of South Asia. Elsevier, pp 179–190

    Chapter  Google Scholar 

  33. Silva ML, Bernardo MA, Singh J, de Mesquita MF (2022) Cinnamon as a complementary therapeutic approach for dysglycemia and dyslipidemia control in type 2 diabetes mellitus and its molecular mechanism of action: a review. Nutrients 14:2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singletary K (2014) Clove: overview of potential health benefits. Nutr Today 49:207–224

    Article  Google Scholar 

  35. Abdel-Wareth AA, Elkhateeb FS, Ismail ZS, Ghazalah AA, Lohakare J (2021) Combined effects of fenugreek seeds and probiotics on growth performance, nutrient digestibility, carcass criteria, and serum hormones in growing rabbits. Livest Sci 251:104616

    Article  Google Scholar 

  36. Mohamad RH, El-Bastawesy AM, Abdel-Monem MG, Noor AM, Al-Mehdar HA, Sharawy SM, El-Merzabani MM (2011) Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). J Med Food 14:986–1001

    Article  CAS  PubMed  Google Scholar 

  37. Kowti R, Majumder P, Harshitha HS, Joshi V, Kumar R, Ahmed SS (2020) Hibiscus herbs-a comprehensive botanical, chemical and biological overview. World J Adv Res Rev 7:291–303

    Article  CAS  Google Scholar 

  38. Izquierdo-Vega JA, Arteaga-Badillo DA, Sánchez-Gutiérrez M, Morales-González JA, Vargas-Mendoza N, Gómez-Aldapa CA, Castro-Rosas J, Delgado-Olivares L, Madrigal-Bujaidar E, Madrigal-Santillán E (2020) Organic acids from Roselle (Hibiscus sabdariffa L.)—a brief review of its pharmacological effects. Biomedicine 8:100

    CAS  Google Scholar 

  39. Chandrika UG, Kumara PA (2015) Gotu kola (Centella asiatica): nutritional properties and plausible health benefits. Adv Food Nutr 76:125–157

    Article  CAS  Google Scholar 

  40. Ghosh S, Murthy PN, Parmanik A, Bose A, Joshi H (2022) Evaluation of anti-inflammatory and analgesic activities of Kokilaksha Kashayam, an Ayurvedic formulation. Res J Pharm Technol 15:2255–2260

    Article  Google Scholar 

  41. Reddy PT, Bhadra P (2020) In silico analysis of the green chiretta (Andrographis paniculata) as targeted therapy for breast cancer. Editorial Board 9:116

    Google Scholar 

  42. Hossain MS, Urbi Z, Sule A, Rahman KM (2014) Andrographis paniculata (Burm. f.) Wall. exNees: a review of ethnobotany, phytochemistry, and pharmacology. Sci World J 2014:274905

    Article  Google Scholar 

  43. Li FS, Weng JK (2017) Demystifying traditional herbal medicine with modern approach. Nat Plants 3:17109

    Article  PubMed  Google Scholar 

  44. Eddouks M, Chattopadhyay D, De Feo V, Cho WC (2014) Medicinal plants in the prevention and treatment of chronic diseases 2013. Evid-Based Complement Alternat Med 2014:180981

    Article  PubMed  PubMed Central  Google Scholar 

  45. Spellmen S (2021) Herbal plants and strategies for preventing diseases. Med Aromat Plants 10:421

    Google Scholar 

  46. Mthiyane FT, Dludla PV, Ziqubu K, Mthembu SX, Muvhulawa N, Hlengwa N, Nkambule BB, Mazibuko-Mbeje SE (2022) A review on the antidiabetic properties of Moringa oleifera extracts: focusing on oxidative stress and inflammation as main therapeutic targets. Front Pharmacol 13:940572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang S, Xin H, Li Y, Zhang D, Shi J, Yang J, Chen X (2013) Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evid-Based Complement Alternat Med 2013:819296

    PubMed  PubMed Central  Google Scholar 

  48. Velusami CC, Agarwal A, Mookambeswaran V (2013) Effect of Nelumbo nucifera petal extracts on lipase, adipogenesis, adipolysis, and central receptors of obesity. Evid-Based Complement Alternat Med 2013:145925

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hunyadi A, Liktor-Busa E, Márki Á, Martins A, Jedlinszki N, Hsieh TJ, Báthori M, Hohmann J, Zupkó I (2013) Metabolic effects of mulberry leaves: exploring potential benefits in type 2 diabetes and hyperuricemia. Evid-Based Complement Alternat Med 2013:948627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tung YT, Chen HL, Tsai HC, Yang SH, Chang YC, Chen CM (2013) Therapeutic potential of andrographolide isolated from the leaves of Andrographis paniculata Nees for treating lung adenocarcinomas. Evid-Based Complement Alternat Med 2013:1

    Google Scholar 

  51. Okhuarobo A, Falodun JE, Erharuyi O, Imieje V, Falodun A, Langer P (2014) Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology. Asian Pac J Trop Dis 4:213–222

    Article  CAS  PubMed Central  Google Scholar 

  52. Hoscheid J, Bersani-Amado CA, da Rocha BA, Outuki PM, da Silva MA, Froehlich DL, Cardoso ML (2013) Inhibitory effect of the hexane fraction of the ethanolic extract of the fruits of Pterodon pubescens Benth in acute and chronic inflammation. Evid-Based Complement Alternat Med 2013:1

    Article  Google Scholar 

  53. Nucci C, Mazzardo-Martins L, Stramosk J, Brethanha LC, Pizzolatti MG, Santos AR, Martins DF (2012) Oleaginous extract from the fruits Pterodon pubescens Benth induces antinociception in animal models of acute and chronic pain. J Ethnopharmacol 143:170–178

    Article  PubMed  Google Scholar 

  54. Hoscheid J, Outuki PM, Kleinubing SA, Goes P, Lima M, Cuman RK, Cardoso ML (2017) Pterodon pubescens oil nanoemulsions: physiochemical and microbiological characterization and in vivo anti-inflammatory efficacy studies. Rev Bras 27:375–383

    CAS  Google Scholar 

  55. Rahmani AH, Aldebasi YH (2016) Potential role of carica papaya and their active constituents in the prevention and treatment of diseases. Int J Pharm Pharm Sci 8:11–15

    CAS  Google Scholar 

  56. Panzarini E, Dwikat M, Mariano S, Vergallo C, Dini L (2014) Administration dependent antioxidant effect of Carica papaya seeds water extract. Evid-Based Complement Alternat Med 2014:1

    Article  Google Scholar 

  57. Liu X, Deng R, Wei X, Wang Y, Weng J, Lao Y, Lu J, Xiong G, Li S (2021) Jian-Pi-Yi-Shen formula enhances perindopril inhibition of chronic kidney disease progression by activation of SIRT3, modulation of mitochondrial dynamics, and antioxidant effects. Biosci Rep 41:BSR20211598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kang P, Han SH, Moon HK, Lee JM, Kim HK, Min SS, Seol GH (2013) Citrus bergamia Risso elevates intracellular Ca2+ in human vascular endothelial cells due to release of Ca2+ from primary intracellular stores. Evid-Based Complement Alternat Med 2013:1

    Google Scholar 

  59. Pandey SN, Rangra NK, Singh S, Arora S, Gupta V (2021) Evolving role of natural products from traditional medicinal herbs in the treatment of Alzheimer’s disease. ACS Chem Neurosci 12:2718–2728

    Article  CAS  PubMed  Google Scholar 

  60. Roy A (2018) Role of medicinal plants against Alzheimer’s disease. Int J Complement Alt Med 11:205–208

    Google Scholar 

  61. Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59

    Article  CAS  PubMed  Google Scholar 

  62. Naseri M, Mianroodi RA, Pakzad Z, Falahati P, Borbor M, Azizi H, Nasri S (2021) The effect of Melissa officinalis L. extract on learning and memory: involvement of hippocampal expression of nitric oxide synthase and brain-derived neurotrophic factor in diabetic rats. J Ethnopharmacol 276:114210

    Article  CAS  PubMed  Google Scholar 

  63. Ozarowski M, Mikolajczak PL, Piasecka A, Kachlicki P, Kujawski R, Bogacz A, Bartkowiak-Wieczorek J, Szulc M, Kaminska E, Kujawska M, Jodynis-Liebert J (2016) Influence of the Melissa officinalis leaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action. Evid-Based Complement Alternat Med 2016:1

    Article  Google Scholar 

  64. Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY (2018) Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J Ginseng Res 42:401–411

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ahmed F, Chandra JN, Manjunath S (2011) Acetylcholine and memory-enhancing activity of Ficus racemosa bark. Pharm Res 3:246

    CAS  Google Scholar 

  66. Calabrese C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B (2008) Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med 14:707–713

    Article  PubMed  PubMed Central  Google Scholar 

  67. Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R (2017) Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem Neurosci 8:884–891

    Article  CAS  PubMed  Google Scholar 

  68. Olijhoek JK, van der Graaf Y, Banga JD, Algra A, Rabelink TJ, Visseren FL (2004) The metabolic syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. Eur Heart J 25:342–348

    Article  PubMed  Google Scholar 

  69. Tan Y, Kamal MA, Wang ZZ, Xiao W, Seale JP, Qu X (2011) Chinese herbal extracts (SK0506) as a potential candidate for the therapy of the metabolic syndrome. Clin Sci 120:297–305

    Article  Google Scholar 

  70. Van Wietmarschen H, van Steenbergen N, van der Werf E, Baars E (2022) Effectiveness of herbal medicines to prevent and control symptoms of urinary tract infections and to reduce antibiotic use, vol 11. A literature review, Integr Med Res, p 100892

    Google Scholar 

  71. Mintah SO, Asafo-Agyei T, Archer MA, Junior PA, Boamah D, Kumadoh D, Appiah A, Ocloo A, Boakye YD, Agyare C (2019) Medicinal plants for treatment of prevalent diseases. Pharmacog—Med Plants, IntechOpen, London, pp 1–9

    Google Scholar 

  72. De Mesquita ML, Grellier P, Mambu L, De Paula JE, Espindola LS (2007) In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. J Ethnopharmacol 110:165–170

    Article  PubMed  Google Scholar 

  73. Ichino C, Soonthornchareonnon N, Chuakul W, Kiyohara H, Ishiyama A, Sekiguchi H, Namatame M, Otoguro K, Omura S, Yamada H (2006) Screening of Thai medicinal plant extracts and their active constituents for in vitro antimalarial activity. Phytother Res 20:307–309

    Article  CAS  PubMed  Google Scholar 

  74. Agavan A, Rahuman AA, Kaushik NK, Sahal D (2011) In vitro antimalarial activity of medicinal plant extracts against plasmodium falciparum. Parasitol Res 108:15–22

    Article  Google Scholar 

  75. Yadav NK, Saini KS, Hossain Z, Omer A, Sharma C, Gayen JR, Singh P, Arya KR, Singh RK (2015, 2015) Saraca indica bark extract shows in vitro antioxidant, antibreast cancer activity and does not exhibit toxicological effects. Oxidative Med Cell Longev

    Google Scholar 

  76. Harma A, Patel VK, Chaturvedi AN (2009) Vibriocidal activity of certain medicinal plants used in Indian folklore medicine by tribals of Mahakoshal region of Central India. Indian J Pharmacol 41:129

    Article  Google Scholar 

  77. Saleh Fares GO, Abdallah L, Almasri M, Slaileh A, Zurba Z (2013) Antibacterial activity of selected palestinian wild plant extracts against multidrug-resistant clinical isolate of streptococcus pneumoniae. JPR: BioMedRx: Int J 1:963–969

    Google Scholar 

  78. Qadi M, Jaradat N, Al-Lahham S, Ali I, Abualhasan MN, Shraim N, Hussein F, Issa L, Mousa A, Zarour A, Badrasawi A (2020) Antibacterial, anticandidal, phytochemical, and biological evaluations of pellitory plant. Biomed Res Int 2020:1

    Article  Google Scholar 

  79. Hussain Z, Mohammad P, Sadozai SK, Khan KM, Nawaz Y, Perveen S (2011) Extraction of anti-pneumonia fractions from the leaves of sugar beets Beta vulgaris. J Pharm Res 4:4783–4785

    Google Scholar 

  80. Adi-Dako O, Kumadoh D, Egbi G, Okyem S, Addo PY, Nyarko A, Osei-Asare C, Oppong EE, Adase E (2021) Strategies for formulation of effervescent granules of an herbal product for the management of typhoid fever. Heliyon 7:e08147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Witvrouw M, Pannecouque C, Fikkert V, Hantson A, Van Remoortel B, Hezareh M, De Clercq E, Brown SJ (2003) Potent and selective inhibition of HIV and SIV by prostratin interacting with viral entry. Antivir Chem Chemother 14:321–328

    Article  CAS  PubMed  Google Scholar 

  82. Ohnson HE, Banack SA, Cox PA (2008) Variability in content of the anti-AIDS drug candidate prostratin in Samoan populations of Homalanthus nutans. J Nat Prod 71:2041–2044

    Article  Google Scholar 

  83. Zhao X, Park SY, Yang D, Lee SY (2018) Synthetic biology for natural compounds. Biochemistry 58:1454–1456

    Article  PubMed  Google Scholar 

  84. Cravens A, Payne J, Smolke CD (2019) Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun 10:1–12

    Article  CAS  Google Scholar 

  85. Romanowski S, Eustáquio AS (2020) Synthetic biology for natural product drug production and engineering. Curr Opin Chem Biol 58:137–145

    Article  CAS  PubMed  Google Scholar 

  86. Li CQ, Lei HM, Hu QY, Li GH, Zhao PJ (2021) Recent advances in the synthetic biology of natural drugs. Front Bioeng Biotechnol 9:691152

    Article  PubMed  PubMed Central  Google Scholar 

  87. Frasch HJ, Medema MH, Takano E, Breitling R (2013) Design-based re-engineering of biosynthetic gene clusters: plug-and-play in practice. Curr Opin Biotechnol 24:1144–1150

    Article  CAS  PubMed  Google Scholar 

  88. Pickens LB, Tang Y, Chooi YH (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barnum CR, Endelman BJ, Shih PM (2021) Utilizing plant synthetic biology to improve human health and wellness. Front Plant Sci 12:691462

    Article  PubMed  PubMed Central  Google Scholar 

  90. Reddy VA, Leong SH, Jang IC, Rajani S (2022) Metabolic engineering of Nicotiana benthamiana to produce cannabinoid precursors and their analogues. Meta 12:1181

    CAS  Google Scholar 

  91. Pontrelli S, Chiu TY, Lan EI, Chen FY, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metabol Eng 50:16–46

    Article  CAS  Google Scholar 

  92. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wendisch VF, Jorge JM, Pérez-García F, Sgobba E (2016) Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol 32:1–10

    Article  CAS  Google Scholar 

  94. Hammer SK, Avalos JL (2017) Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 13:823–832

    Article  CAS  PubMed  Google Scholar 

  95. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dugé de Bernonville T, Maury S, Delaunay A, Daviaud C, Chaparro C, Tost J, O’connor SE, Courdavault V (2020) Developmental methylome of the medicinal plant Catharanthus roseus unravels the tissue-specific control of the monoterpeneindole alkaloid pathway by DNA methylation. Int J Mol Sci 21:6028

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jaggi M, Kumar S, Sinha AK (2011) Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol 90:1005–1016

    Article  CAS  PubMed  Google Scholar 

  98. Li Q, Zhu T, Zhang R, Bu Q, Yin J, Zhang L, Chen W (2020) Molecular cloning and functional analysis of hyoscyamine 6β-hydroxylase (H6H) in the poisonous and medicinal plant Datura innoxia mill. Plant Physiol Biochem 153:11–19

    Article  CAS  PubMed  Google Scholar 

  99. Sharafi A, Sohi HH, Mousavi A, Azadi P, Khalifani BH, Razavi K (2013) Metabolic engineering of morphinan alkaloids by over-expression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol Lett 35:445–453

    Article  CAS  PubMed  Google Scholar 

  100. Lan X, Zeng J, Liu K, Zhang F, Bai G, Chen M, Liao Z, Huang L (2018) Comparison of two hyoscyamine 6β-hydroxylases in engineering scopolamine biosynthesis in root cultures of Scopolia lurida. Biochem Biophys Res Commun 497:25–31

    Article  CAS  PubMed  Google Scholar 

  101. Guo Z, Tan H, Lv Z, Ji Q, Huang Y, Liu J, Chen D, Diao Y, Si J, Zhang L (2018) Targeted expression of Vitreoscilla hemoglobin improves the production of tropane alkaloids in Hyoscyamus Niger hairy roots. Sci Rep 8:17969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shim JS, Lee OR, Kim YJ, Lee JH, Kim JH, Jung DY, In JG, Lee BS, Yang DC (2010) Overexpression of PgSQS1 increases ginsenoside production and negatively affects ginseng growth rate in Panax ginseng. J Ginseng Res 34:98–103

    Article  CAS  Google Scholar 

  103. Han JY, Kim MJ, Ban YW, Hwang HS, Choi YE (2013) The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 54:2034–2046

    Article  CAS  PubMed  Google Scholar 

  104. Mendoza-Poudereux I, Muñoz-Bertomeu J, Navarro A, Arrillaga I, Segura J (2014) Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metabol Eng 23:136–144

    Article  CAS  Google Scholar 

  105. Tariq H, Asif S, Andleeb A, Hano C, Abbasi BH (2023) Flavonoid production: current trends in plant metabolic engineering and De Novo microbial production. Metabolites 13:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fowler ZL, Gikandi WW, Koffas MA (2009) Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mark R, Lyu X, Ng KR, Chen WN (2019) Gene source screening as a tool for naringenin production in engineered Saccharomyces cerevisiae. ACS omega 4:12872–12879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  PubMed  Google Scholar 

  109. Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabol Eng 9:160–168

    Article  CAS  Google Scholar 

  110. Arendt P, Pollier J, Callewaert N, Goossens A (2016) Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms. The Plant J 87:16–37

    Article  CAS  PubMed  Google Scholar 

  111. Chen Y, Smanski MJ, Shen B (2010) Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen Y, Wendt-Pienkowski E, Shen B (2008) Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190:5587–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4:564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang L, Jing F, Li F, Li M, Wang Y, Wang G, Sun X, Tang K (2009) Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem 52:199–207

    Article  CAS  PubMed  Google Scholar 

  115. Kim SH, Kim YH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013) Down regulation of the lycopene ϵ-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli. Physiol Plant 147:432–442

    Article  CAS  PubMed  Google Scholar 

  116. Chemler JA, Fowler ZL, McHugh KP, Koffas MA (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metabol eng 12:96–104

    Article  CAS  Google Scholar 

  117. Cankar K, Jongedijk E, Klompmaker M, Majdic T, Mumm R, Bouwmeester H, Bosch D, Beekwilder J (2015) (+)-Valencene production in Nicotiana benthamiana is increased by down-regulation of competing pathways. Biotechnol J 10:180–189

    Article  CAS  PubMed  Google Scholar 

  118. Ghosh D, Debnath S, De K (2020) Impact of stress factors on plants for enhancing biomass generations towards biofuels. Plant stress biology: progress and prospects of genetic engineering, pp 313

    Google Scholar 

  119. Zakaria MM, Schemmerling B, Ober D (2021) CRISPR/Cas9-mediated genome editing in comfrey (Symphytum officinale) hairy roots results in the complete eradication of pyrrolizidine alkaloids. Molecules 26:1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Katsuyama Y, Funa N, Miyahisa I, Horinouchi S (2007) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem Biol 14:613–621

    Article  CAS  PubMed  Google Scholar 

  121. Clomburg JM, Qian S, Tan Z, Cheong S, Gonzalez R (2019) The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci 116:12810–12815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Runguphan W, Qu X, O’Connor SE (2010) Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 468:461–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lu X, Liu Y, Yang Y, Wang S, Wang Q, Wang X, Yan Z, Cheng J, Liu C, Yang X, Luo H (2019) Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat Commun 10:1378

    Article  PubMed  PubMed Central  Google Scholar 

  124. Engqvist MK, Rabe KS (2019) Applications of protein engineering and directed evolution in plant research. Plant Physiol 179:907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Leonard E, Koffas MA (2007) Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl Environ Microbiol 73:7246–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kang W, Ma T, Liu M, Qu J, Liu Z, Zhang H, Shi B, Fu S, Ma J, Lai LT, He S (2019) Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat Commun 10:4248

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chatfield K, Salehi B, Sharifi-Rad J, Afshar L (2018) Applying an ethical framework to herbal medicine. Evid-Based Complement Alternat Med 2018:1903629

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fatima N, Nayeem N (2016) Toxic effects as a result of herbal medicine intake. Toxicology-new aspects to this scientific conundrum. InTech Open, London, pp 193–207

    Google Scholar 

  129. Boullata JI, Nace AM (2000) Safety issues with herbal medicine. Pharmacother: J Hum Pharmacol Drug Ther 20:257–269

    Article  CAS  Google Scholar 

  130. Mei N, Guo X, Ren Z, Kobayashi D, Wada K, Guo L (2017) Review of Ginkgo biloba-induced toxicity, from experimental studies to human case reports. J Environ Sci Health Part C 35:1–28

    Article  CAS  Google Scholar 

  131. Liu Q, Zhuo L, Liu L, Zhu S, Sunnassee A, Liang M, Zhou L, Liu Y (2011) Seven cases of fatal aconite poisoning: forensic experience in China. Forensic Sci Int 212:e5–e9

    Article  CAS  PubMed  Google Scholar 

  132. Chan TY (2009) Aconite poisoning presenting as hypotension and bradycardia. Hum Exp Toxicol 28:795–797

    Article  PubMed  Google Scholar 

  133. Nazari S, Rameshrad M, Hosseinzadeh H (2017) Toxicological effects of Glycyrrhiza glabra (licorice): a review. Phytother Res 31:1635–1650

    Article  PubMed  Google Scholar 

  134. Xu X, Zhu R, Ying J, Zhao M, Wu X, Cao G, Wang K (2020) Nephrotoxicity of herbal medicine and its prevention. Front Pharmacol 11:569551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim Y, Flamm A, ElSohly MA, Kaplan DH, Hage RJ, Hamann CP, Marks JG (2019) Poison ivy, oak, and sumac dermatitis: what is known and what is new? Dermatitis 30:183–190

    Article  PubMed  Google Scholar 

  136. World Health Organization (2004) WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. World Health Organization, p 18

    Google Scholar 

  137. Devi A, Devi R, Kumar S, Jeet K, Chauhan T, Dhatwalia G, Nikhil N, Chandel S, Kumar A (2022) Regulatory status of herbal drugs in India. Int J Appl Pharm Sci Res 7:30–35

    Google Scholar 

  138. Sharma S (2015) Current status of herbal product: regulatory overview. J Pharm Bioallied Sci 7:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Briggs DR (2002) The regulation of herbal medicines in Australia. Toxicology 181:565–570

    Article  PubMed  Google Scholar 

  140. Brown AC (2017) An overview of herb and dietary supplement efficacy, safety and government regulations in the United States with suggested improvements. Food Chem Toxicol 107:449–471

    Article  CAS  PubMed  Google Scholar 

  141. Sachani A (2002) Warning: over-consumption of this product may be harmful to your health-applying the proposed Canadian natural health product regulatory framework to clarify the level of substantiation required for dietary supplement claims in the United States. Sw JL & Trade Am 9:391

    Google Scholar 

  142. Ghosh D (2017) Systems biology paves pathway and potential enzymes predictions towards anticancer drug methyl Jasmonate biosynthesis. J Appl Pharm Sci 7:153–159

    CAS  Google Scholar 

  143. Ghosh D, Singh P, Chaudhary S, Sarkar S, Saoud J (2023) Quandary of antibiotics and multidrug resistance development: a molecular genetics-based dilemma. In: Lantibiotics as alternative therapeutics. Academic Press, pp 1–23

    Google Scholar 

  144. Debnath S, Ghosh D (2023) Qualitative and quantitative studies on biopigment producing algal regime from marine water resources of Sundarban region. J Pure Appl Microbiol 17:576–589

    Article  Google Scholar 

Download references

Acknowledgment

Authors would like to thank JIS University and JIS Group of educational initiatives for their encouragements.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ghosh, D., Adhikary, S., Bhattacherjee, P., Debnath, S. (2024). Herbal Medicine for Health Management and Disease Prevention. In: Izah, S.C., Ogwu, M.C., Akram, M. (eds) Herbal Medicine Phytochemistry. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-21973-3_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21973-3_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21973-3

  • Online ISBN: 978-3-031-21973-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics