Skip to main content

Symmetric and Asymmetric Cryptography on the Special Linear Cracovian Quasigroup

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

We propose symmetric and public key cryptographic protocols on the non-associative special linear Cracovian quasigroup. The \(\textrm{SL}_n(Z)\) Cracovian quasigroup is the set of \(n\times n\) matrices with determinant one and entries in the ring of integers Z with the non-associative multiplication. The strength of the proposed symmetric cipher is based on the NP-hardness of the non-negative matrix factorization problem. We define the totient function for a given matrix from the special linear group over the ring Z/mZ of integers modulo m as the order of a cyclic subgroup generated by this matrix. Defined in this way totient function allows us to construct the public key cryptographic protocol on the special linear group \(\textrm{SL}_n(Z_m)\) and generalize it to the Cracovian quasigroup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Annalen 71, 116–144 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  2. Myasnikov, A., Shpilrain, V, Ushakov, A.: Non-commutative Cryptography and Complexity of Group-Theoretic Problems, Mathematical Surveys and Monographs, Vol. 177. AMS (2011)

    Google Scholar 

  3. Miller, C.F.: On Group-Theoretic Decision Problems and Their Classification, AMS 68. Princeton University Press (1971)

    Google Scholar 

  4. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory. Dover Publications (2004)

    Google Scholar 

  5. Novikov, P.S.: Unsolvability of the conjugacy problem in the theory of groups. Izv. Akad. Nauk SSSR Ser. Mat. 18(6), 485–524 (1954)

    MathSciNet  Google Scholar 

  6. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. Steklov 44, 3–143 (1955). (in Russian)

    Google Scholar 

  7. Boone, W.W.: Certain simple unsolvable problems of group theory. Indagationes Math. 16, 231–237, 492–497 (1954); 17, 252-256, 571-577 (1955); 19, 22-27, 227-232 (1957)

    Google Scholar 

  8. Boone, W.W.: The word problem. Ann. Math. 70, 207–265 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Adian, S.I.: On algorithmic problems in effectively complete classes of groups. Doklady Akad. Nauk SSSR 123, 13–16 (1958). (in Russian)

    MathSciNet  Google Scholar 

  10. Adian, S.I., Durnev, V.: G: decision problems for groups and semigroups. Russ. Math. Surv. 55, 207–296 (2000)

    Article  Google Scholar 

  11. Rabin, M.O.: Recursive unsolvability of group theoretic problems. Ann. Math. 67, 172–194 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wagner, N.R., Magyarik, M.R.: A public-key cryptosystem based on the word problem. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 19–36. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_3

    Chapter  Google Scholar 

  13. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_10

    Chapter  Google Scholar 

  14. Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Math. Res. Lett. 6, 1–5 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Anshel, I., Anshel, M., Goldfeld, D.: Non-abelian key agreement protocols. Discret. Appl. Math. 130, 3–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koscielny, C., Mullen, G.L.: A quasigroup-based public-key cryptosystem. Int. J. Appl. Math. Comp. Sci. 9(4), 955–963 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Kalka, A.: Non-associative public-key cryptography, arxiv.org/abs/1210.8270v1 (2012)

  18. Lipiński, Z.: Symmetric and asymmetric cryptographic key exchange protocols in the octonion algebra. Appl. Algebra Eng. Commun. Comput. (AAECC) 32, 81–96 (2021). https://doi.org/10.1007/s00200-019-00402-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Dehornoy, P.: Braids and Self-Distributivity. Progress in Math. vol. 192. Birkh\(\ddot{a}\)user (2000)

    Google Scholar 

  20. Conway, J.H., Smith, D.A.: On quaternions and octonions: their geometry, arithmetic, and symmetry. A K Peters Ltd (2003)

    Google Scholar 

  21. Jacobson, N.: Structure and representations of Jordan algebras. AMS 39 (1968)

    Google Scholar 

  22. Kocinski, J.: Cracovian Algebra. Nova Science Pub Inc, UK edition (2004)

    Google Scholar 

  23. Milnor, J.: Introduction to Algebraic K-Theory. Princeton University Press (1971)

    Google Scholar 

  24. Smith, J.D.H.: An Introduction to Quasigroups and Their Representations. Chapman & Hall/CRC (2007)

    Google Scholar 

  25. Stanley, R.: Enumerative Combinatorics, vol. 2, p. 173. Cambridge University Press (1999)

    Google Scholar 

  26. Vavasis, S.A.: On the complexity of nonnegative matrix factorization, arXiv:0708.4149v2 (2007)

  27. Naik, G.R. (ed.): Non-negative Matrix Factorization Techniques. SCT, Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48331-2

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Mizera-Pietraszko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lipiński, Z., Mizera-Pietraszko, J. (2022). Symmetric and Asymmetric Cryptography on the Special Linear Cracovian Quasigroup. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21967-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21966-5

  • Online ISBN: 978-3-031-21967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics