Skip to main content

A Research for Segmentation of Brain Tumors Based on GAN Model

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13758))

Included in the following conference series:

Abstract

Analysis of medical image is a useful method that can support doctors in medical diagnosis. The development of deep learning models is essential and widely applied in image processing and computer vision. Application of machine learning and artificial intelligent in brain tumor diagnosis brings an accuracy and efficiency in medical treatment field. In this research paper, we present a method for determining and segmenting the brain tumor region in the medical image dataset based on 3D Generative Adversarial Network (3D-GAN) model. We first explore the state-of-the-art methods and recent approaches in such field. Our proposed 3D-GAN model consist of three steps: (i) pre-processing data, (ii) building an architecture of multi-scaled GAN model, and (iii) modifying loss function. The last our contribution is creating an application to visualize 3D models that representation of medical resonance brain images with the incorporation of the chosen models to determine exactly the region containing brain tumors. Comparing to the existing methods, our proposed model obtained better performance and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  2. Maji, D., Sigedar, P., Singh, M.: Attention Res-UNet with guided decoder for semantic segmentation of brain tumors. Biomed. Signal Process. Control 71, 103077 (2022). https://doi.org/10.1016/j.bspc.2021.103077

    Article  Google Scholar 

  3. Zhaoa, Z., Wang, Y., Liu, K., Yang, H., Sun, Q., Qiao, H.: Semantic segmentation by improved generative adversarial networks. In: Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and Information Sciences (2021). https://doi.org/10.48550/ARXIV.2104.09917

  4. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. In: Computer Vision and Pattern Recognition (2021). https://doi.org/10.48550/ARXIV.2107.02314

  5. Van Nguyen, S., Tran, H.M., Maleszka, M.: Geometric modeling: background for processing the 3d objects. Appl. Intell. 51(8), 6182–6201 (2021). https://doi.org/10.1007/s10489-020-02022-6

    Article  Google Scholar 

  6. Nguyen, V.S., Tran, M.H., Vu, H.M.Q.: An improved method for building a 3D model from 2D DICOM. In: Proceedings of International Conference on Advanced Computing and Applications (ACOMP), pp. 125–131. IEEE (2018). ISBN 978-1-5386-9186-1

    Google Scholar 

  7. Sinh, N.V., Ha, T.M., Truong, L.S.: Application of geometric modeling in visualizing the medical image dataset. J. SN Comput. Sci. 1(5), 254 (2020)

    Article  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. J. Neural Netw. 121, 74–87 (2020). https://doi.org/10.1016/j.neunet.2019.08.025

    Article  Google Scholar 

  10. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. J. IEEE Trans. Med. Imaging (2019). https://doi.org/10.48550/arXiv.1912.05074

    Article  Google Scholar 

  11. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: The Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  12. Cicek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net learning dense volumetric segmentation from sparse annotation. In: Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and Information Sciences (2016). https://arxiv.org/abs/1606.06650

  13. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), (2018). https://doi.org/10.1109/lgrs.2018.2802944. ISSN 1558-0571

  14. Li, R., et al.: DeepUNet: a deep fully convolutional network for pixel-level sea-land segmentation. arXiv (2017). https://doi.org/10.48550/ARXIV.1709.00201

  15. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv (2018). https://doi.org/10.48550/ARXIV.1804.03999

  16. Chen, H., Qin, Z., Ding, Y., Lan, T.: Brain tumor segmentation with generative adversarial nets. In: 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 301–305 (2019). https://doi.org/10.1109/ICAIBD.2019.8836968

  17. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  18. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  19. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  20. Futrega, M., Milesi, A., Marcinkiewicz, M., Ribalta, P.: Optimized U-Net for brain tumor segmentation. arXiv preprint arXiv:2110.03352 (2021)

  21. Luu, H.M., Park, S.-H.: Extending nn-UNet for brain tumor segmentation. In: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (2021). https://doi.org/10.48550/arXiv.2112.04653

  22. Xue, Y., Xu, T., Zhang, H., Long, L.R., Huang, X.: SegAN: adversarial network with multi-scale L1 loss for medical image segmentation. J. Neuroinform. 16(3–4), 383–392 (2018)

    Article  Google Scholar 

  23. Cirillo, M.D., Abramian, D., Eklund, A.: Vox2Vox: 3D-GAN for brain tumour segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 274–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_25

    Chapter  Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and Information Sciences (2015). https://doi.org/10.48550/ARXIV.1512.03385

  25. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and Information Sciences (2016). https://doi.org/10.48550/ARXIV.1608.04117

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Machine Learning (cs.LG), FOS: Computer and Information Sciences (2014). https://doi.org/10.48550/ARXIV.1412.6980

Download references

Acknowledgment

This research is funded by International University, VNU-HCM under grant number SV2021-IT-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinh Van Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khanh Phung, L., Van Nguyen, S., Duy Le, T., Maleszka, M. (2022). A Research for Segmentation of Brain Tumors Based on GAN Model. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21967-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21966-5

  • Online ISBN: 978-3-031-21967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics