Skip to main content

Parameter Distribution Ensemble Learning for Sudden Concept Drift Detection

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13758))

Included in the following conference series:

Abstract

Concept drift is a big challenge in data stream mining (including process mining) since it seriously decreases the accuracy of a model in online learning problems. Model adaptation to changes in data distribution before making new predictions is very necessary. This paper proposes a novel ensemble method called E-ERICS, which combines multiple Bayesian-optimized ERICS models into one model and uses a voting mechanism to determine whether each instance of a data stream is a concept drift point or not. The experimental results on the synthetic and classic real-world streaming datasets showed that the proposed method is much more precise and more sensitive (shown in F1-score, precision, and recall metrics) than the original ERICS models in detecting concept drift, especially a sudden drift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, A., Javed, A.R., Chakraborty, C., Nebhen, J., Zehra, W., Jalil, Z.: ElStream: an ensemble learning approach for concept drift detection in dynamic social big data stream learning. In IEEE Access 9, 66408–66419 (2021)

    Article  Google Scholar 

  2. Althabiti, M., Abdullah, M.: Streaming data classification with concept drift. Bioscience Biotechnology Research Communications 12(1) (2019)

    Google Scholar 

  3. Baena-Garcia, M., del Campo-Avila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth int. workshop on knowledge discovery from data streams, vol. 6, pp. 77–86 (2006)

    Google Scholar 

  4. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  5. de Barros, R.S.M., de Carvalho Santos, S.G.T.: An overview and comprehensive comparison of ensembles for concept drift. In: Information Fusion, vol. 52, pp. 213–244 (2019)

    Google Scholar 

  6. Dietterich, T.G.: Ensemble methods in machine learning. In: International workshop on multiple classifier systems, pp. 1–15. Springer, Berlin, Heidelberg (2000)

    Google Scholar 

  7. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml, last accessed 30 March 2022

  8. Gama, J., Medas, P., C, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  9. Gulcan, E.B., Can, F.: Implicit Concept Drift Detection for Multi-label Data Streams. arXiv preprint, arXiv:2202.00070v1 (2022)

  10. Haug, J., Kasneci, G.: Learning parameter distributions to detect concept drift in data streams. In: 2020 25th International Conference on Pattern Recognition (ICPR). IEEE (2021)

    Google Scholar 

  11. Imbrea, A.: Automated Machine Learning Techniques for Data Streams. arXiv preprint, arXiv:2106.07317v1 (2021)

  12. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: A multi-output streaming framework. The Journal of Machine Learning Research 19(72), 1–5 (2018)

    Google Scholar 

  13. Museba, T., Nelwamondo, F., Ouahada, K., Akinola, A.: Recurrent adaptive classifier en-semble for handling recurring concept drifts. In: Applied Computational Intelligence and Soft Computing, vol. 2021, pp. 1–13 (2021)

    Google Scholar 

  14. Nogueira, F.: Bayesian Optimization: Open source constrained global optimization tool for Python (2014). https://github.com/fmfn/BayesianOptimization

  15. Raab, C., Heusinger, M., Schleif, F.M.: Reactive soft prototype computing for concept drift streams. Neurocomputing, vol. 416, pp. 340–351. Elsevier (2020)

    Google Scholar 

  16. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press (2006)

    Google Scholar 

  17. Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L., Petitjean, F.: Characterizing concept drift. Data Min. Knowl. Disc. 30(4), 964–994 (2016). https://doi.org/10.1007/s10618-015-0448-4

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu, H., Liu, T., Lu, J., Zhang, G.: Automatic Learning to Detect Concept Drift. arXiv preprint, arXiv: 2105.01419v1 (2021)

    Google Scholar 

  19. Yu, S., Abraham, Z.: Concept drift detection with hierarchical hypothesis testing. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 768–776. SIAM (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khanh-Tung Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, KT., Tran, T., Nguyen, AD., Phan, XH., Ha, QT. (2022). Parameter Distribution Ensemble Learning for Sudden Concept Drift Detection. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21967-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21966-5

  • Online ISBN: 978-3-031-21967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics