Skip to main content

Avoiding Time Series Prediction Disbelief with Ensemble Classifiers in Multi-class Problem Spaces

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13758))

Included in the following conference series:

  • 646 Accesses

Abstract

Time series data is everywhere: it comes e.g. from IoT devices, financial transactions as well as medical and scientific observations. Time series analysis provides powerful tools and methodologies for modeling many kinds of related processes. Predictions based on such models often are of great value for many applications. But even the most accurate prediction will be useless if potential users will not want to accept and further use it. The article presents the problem of prediction disbelief and its relation with acceptance tests of predictions during lifecycle of time series analysis. The main contribution of the paper is classification and modeling of possible types of organization of acceptance tests of the outcomes of forecasting tools. This is done in the form of ensembles of classifiers working contextually in multi-class problem spaces. This allows to formulate, analyze and select the best methods of avoiding influence of prediction disbelief problem during time series analysis lifecycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahardja, D.: Statistical methodological review for time-series data. J. Stat. Manag. Syst. 23(8), 1445–1461 (2020)

    Google Scholar 

  2. Petitjean, F., Weber, J.: Efficient satellite image time series analysis under time warping. Geosc. Remote Sens. Lett. 11(6), 1143–1147 (2014)

    Article  Google Scholar 

  3. Wonkook, K., Tao, H., Dongdong, W., Changyong, C., Shunlin, L.: Assessment of long-term sensor radiometric degradation using time series analysis. IEEE Trans. Geosci. Remote Sens. 52(5), 2960–2976 (2013)

    Google Scholar 

  4. Orfila, A., Ballester, J.L., Oliver, R., Alvarez, A., Tintoré, J.: Forecasting the solar cycle with genetic algorithms. Astron. Astrophys. 386, 313–318 (2002)

    Article  Google Scholar 

  5. Mirmomeni, M., Lucas, C., Moshiri, B., Araabi, B.N.: Introducing adaptive neurofuzzy modeling with online learning method for prediction of time-varying solar and geomagnetic activity indices. Expert Sys. with App. 37(12), 8267–8277 (2010)

    Article  Google Scholar 

  6. Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P.: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens. Environ. 115(12), 3129–3152 (2011)

    Article  Google Scholar 

  7. Rivero, C.R., Pucheta, J., Laboret, S., Herrera, M., Sauchelli, V.: Time series forecasting using bayesian method: application to cumulative rainfall. IEEE Lat. Am. Trans. 11(1), 359–364 (2013)

    Article  Google Scholar 

  8. Saulquin, B., Fablet, R., Mercier, G., Demarcq, H., Mangin, A., FantondAndon, O.H.: Multiscale event-based mining in geophysical time series: characterization and distribution of significant time-scales in the sea surface temperature anomalies relatively to ENSO periods from 1985 to 2009. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(8), 3543–3552 (2014)

    Article  Google Scholar 

  9. Lehman, L.W.H., et al.: A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J. Biomed. Health Inform. 19(3), 1068–1076 (2015)

    Article  Google Scholar 

  10. Uniyal, N., et al.: Ultrasound RF Time Series for Classification of Breast Lesions. IEEE Trans. Med. Imaging 34(2), 652–661 (2015)

    Article  MathSciNet  Google Scholar 

  11. Nogales, F.J., Contreras, J., Conejo, A.J., Espinola, R.: Forecasting next-day electricity prices by time series models. IEEE Tran. Power Syst. 17(2), 342–348 (2002)

    Article  Google Scholar 

  12. Huarnga, K., HuiKuang, Y.: A type 2 fuzzy time series model for stock index forecasting. Phys. A 353, 445–462 (2005)

    Article  Google Scholar 

  13. Chand, S., Chandra, R.: Cooperative coevolution of feed forward neural networks for financial time series problem. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 202–209. IEEE, Beijing (2014)

    Google Scholar 

  14. Yatao, L., Fen, Y.: Multivariate time series analysis in corporate decision-making application. In: 2011 International Conf. on Information Technology, Computer Engineering and Management Sciences (ICM), pp. 374–376. IEEE, Nanjing (2011)

    Google Scholar 

  15. Yi, C., Yuhua, L., Coleman, S., Belatreche, A., McGinnity, T.M.: Adaptive hidden markov model with anomaly states for price manipulation detection. IEEE Trans. Neural Netw. Learn. Syst. 26(2), 318–330 (2015)

    Article  MathSciNet  Google Scholar 

  16. Fujimaki, R., Nakata, T., Tsukahara, H., Sato, A, Yamanishi, K.: Mining abnormal patterns from heterogeneous time-series with irrelevant features for fault event detection. J. Statist. Anal. Data Mining. 2(1), 1–17 (2009)

    Google Scholar 

  17. Pascale, A., Nicoli, M.: Adaptive Bayesian network for traffic flow prediction. In: Statistical Signal Processing Workshop (SSP), pp. 177–180. IEEE (2011)

    Google Scholar 

  18. Peixian, L., Zhixiang, T., Lili Y., Kazhong D.: Time series prediction of mining subsidence based on genetic algorithm neural network. In: 2011 International Symposium on Computer Science and Society (ISCCS), pp. 83–86. IEEE, Kota Kinabalu (2011)

    Google Scholar 

  19. Hao, Q., Srinivasan, D., Khosravi, A.: Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 303–315 (2014)

    Article  Google Scholar 

  20. Arbi, I.B., Derbel, F., Strakosch, F.: Forecasting methods to reduce energy consumption in WSN. In: 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2017)

    Google Scholar 

  21. Ramadhan, A., Khodra, M.L.: Ranking prediction for time-series data using learning to rank (Case Study: Top mobile games prediction). In: 2014 International Conference of Advance Informatics: Concept, Theory and Application (ICAICTA), pp. 214–219. IEEE, Bandung (2014)

    Google Scholar 

  22. Zhan, P., Xu, H., Luo, W., Li, W.: A novel network traffic anomaly detection approach using the optimal φ-DTW. In: 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), pp. 1–4 (2020)

    Google Scholar 

  23. Xiaoshuang, X., Tao, J., Wei, C., Yan, H., Xiuzhen, C.: Spectrum prediction in cognitive radio networks. Wirel. Commun. 20(2), 90–96 (2013)

    Article  Google Scholar 

  24. Matsumoto, T, Yosui, K.: Adaptation and change detection with a sequential monte carlo scheme. IEEE Trans. Syst., Man, Cybern. B. 37(3), 592–606 (2007)

    Google Scholar 

  25. Bo-Tsuen, C., Mu-Yen, C., Min-Hsuan, F., Chia-Chen, C.: Forecasting stock price based on fuzzy time-series with equal-frequency partitioning and fast Fourier transform algorithm. In: 2012 Computing, Communications and Applications Conference (ComComAp), pp. 238–243. IEEE, Hong Kong (2012)

    Google Scholar 

  26. Hilas, C.S., Rekanos, I.T., Goudos, S.K., Mastorocostas, P.A., Sahalos, J.N.: Level change detection in time series using higher order statistics. In: 16th International Conference on Digital Signal Processing, pp. 1–6. IEEE, Santorini-Hellas (2009)

    Google Scholar 

  27. Dabhi, V.K., Chaudhary, S.: Time series modeling and prediction using postfix genetic programming. In: 2014 Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), pp. 307–314. IEEE, Rohtak (2014)

    Google Scholar 

  28. Harphama, C., Dawson, C.W.: The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing 69(16), 2161–2170 (2006)

    Article  Google Scholar 

  29. Li, Y., Kong, X., Fu, H., Tian, Q.: Contextual modeling on auxiliary points for robust image reranking. Front. Comp. Sci. 13(5), 1010–1022 (2018). https://doi.org/10.1007/s11704-018-7403-7

    Article  Google Scholar 

  30. Bas, E., Egrioglu, E., Aladag, C.H., Yolcu, U.: Fuzzy-time-series network used to forecast linear and nonlinear time series. Appl. Intell. 43(2), 343–355 (2015). https://doi.org/10.1007/s10489-015-0647-0

    Article  Google Scholar 

  31. Rahman, M.M., Santu, S.K.K., Islam, M.M., Murase, K.: Forecasting time series - a layered ensemble architecture. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 210–217. IEEE, Beijing (2014)

    Google Scholar 

  32. SadeghiNiaraki, A., Mirshafiei, P., Shakeri, M., Choi, S.-M.: Short-term traffic flow prediction using the modified Elman recurrent neural network optimized through a genetic algorithm. IEEE Access 8, 217526 (2020)

    Article  Google Scholar 

  33. Miranian, A., Abdollahzade, M.: Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 207–218 (2013)

    Google Scholar 

  34. Matsumoto, T.: Connectionist interpretation of the association between cognitive dissonance and attention switching. Neural Netw. 60, 119–132 (2014)

    Article  MATH  Google Scholar 

  35. Ruparelia, N.: Software development lifecycle models, Hewlett Packard enterprise. ACM SIGSOFT Softw. Eng. Notes 35(3), 8–13 (2010)

    Article  Google Scholar 

  36. Stefanou, C.J.: System Development Life Cycle, pp. 329–344. Encyclopedia of Information Systems, Elsevier (2003)

    Google Scholar 

  37. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges. arXiv:1905.04223, pp. 1–36 (2019)

  38. Bhattacharyya, S.: Confidence in predictions from random tree ensembles. In: 11th International Conference on Data Mining (ICDM), pp. 71–80. IEEE, Vancouver (2011)

    Google Scholar 

  39. Yamasaki, T., Maeda, T., Aizawa, K.: SVM is not always confident: telling whether the output from multiclass SVM is true or false by analysing its confidence values. In: 16th International Workshop on Multimedia Signal Processing, pp. 1–5. IEEE, Jakarta (2014)

    Google Scholar 

  40. Haghighi, S., Jasemi, M., Hessabi, S., Zolanvari, A.: PyCM: Multiclass confusion matrix library in Python. J. Open Source Softw. 3(25), 729 (2018)

    Article  Google Scholar 

  41. Delgado, R., Núñez-González, J.D. Enhancing Confusion Entropy (CEN) for binary and multiclass classification. PLoS ONE. 14(1), e0210264 (2019)

    Google Scholar 

  42. Huk, M., Szczepanik, M.: Multiple classifier error probability for multi-class problems. Eksploatacja i Niezawodność – Maint. Reliab. 51(3), 12–20 (2011)

    Google Scholar 

  43. Wang, X., Davidson, N.: The upper and lower bounds of the prediction accuracies of ensemble methods for binary classification. In: Ninth International Conference on Machine Learning and Applications, pp. 373–378. IEEE, Washington, DC (2010)

    Google Scholar 

  44. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  45. Szczepanik, M., Jóźwiak, I.: Fingerprint recognition based on minutes groups using directing attention algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS (LNAI), vol. 7268, pp. 347–354. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29350-4_42

    Chapter  Google Scholar 

  46. Tripathi, A.M., Baruah, R.D.: Contextual anomaly detection in time series using dynamic Bayesian network. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) Intelligent Information and Database Systems. LNCS (LNAI), vol. 12034, pp. 333–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42058-1_28

    Chapter  Google Scholar 

  47. Huk, M.: Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network. Int. J. Appl. Math. Comput. Sci. 22(2), 449–459 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Dragulescu, D., Albu, A.: Expert system for medical predictions. In: Proceedings of 4th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, pp. 123–128. IEEE (2007)

    Google Scholar 

  49. Mikusova, M., Abdunazarov, J., Zukowska, J.: Modelling of the movement of design vehicles on parking space for designing parking. Commun. Comput. Inf. Sci. 1049, 188–201 (2019)

    Google Scholar 

  50. Pȩszor, D., Paszkuta, M., Wojciechowska, M., Wojciechowski, K.: Optical flow for collision avoidance in autonomous cars. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) Intelligent Information and Database Systems. LNCS (LNAI), vol. 10752, pp. 482–491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_46

    Chapter  Google Scholar 

  51. Wereszczyński, K., et al.: Cosine series quantum sampling method with applications in signal and image processing. arXiv:2011.12738, pp. 1–64 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Huk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huk, M. (2022). Avoiding Time Series Prediction Disbelief with Ensemble Classifiers in Multi-class Problem Spaces. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21967-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21966-5

  • Online ISBN: 978-3-031-21967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics