Skip to main content

Current Biotechnological Approaches in Maize Improvement

  • Chapter
  • First Online:
Maize Improvement

Abstract

Maize is a major consumable cereal crop and a resource of a range of economic products worldwide. Approximately, 55%, 20%, and 12% of maize are utilized for feed, nonfood products, and food purposes, respectively. Consumption of maize is expected to increase in many Asian and African countries, where yield is estimated to be double by 2030. Biotechnology contributes largely to the maize improvement to meet the growing demand. Molecular marker technologies have facilitated rapid improvements in maize breeding by characterizing germplasm, verifying pedigree records, classifying inbred on the basis of heterosis, figuring out what causes heterosis and how to predict it, finding and localizing genes, and using marker-assisted selection. The advent of sequencing and genomic technologies, bioengineering techniques such as genetic transformation and CRISPR-Cas genome editing, and the establishment of advanced molecular breeding methodologies using genomic information have a large influence on maize breeding. The advancement of informatics and biotechnology has led to the development of several bioinformatic tools that are extensively been utilized by maize researchers for successful molecular breeding. Furthermore, modern biotechnology offers a revolutionary platform like nanobiotechnology for increasing maize genetic gain by delivering a specific gene or QTL (quantitative trait locus) to develop plants having novel traits. This chapter provides an overview and discusses current biotechnological advancement in maize research that may bring potential opportunities for the improvement of this crop in the changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY (2016) In: Abdurakhmonov IY (ed) Bioinformatics: Basics, development, and future, bioinformatics - Updated features and applications. IntechOpen. Available from: https://www.intechopen.com/chapters/50934

    Chapter  Google Scholar 

  • Abecasis GR, Cookson WO, Cardon LR (2001) The power to detect linkage disequilibrium with quantitative traits in selected samples. Am J Hum Genet 68:1463–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ABEurope (2003) Future developments in crop biotechnology. Issue paper 6. www.ABEurope.info

  • Ajala SO, Olayiwola MO, Ilesanmi OJ, Gedil M, Job AO, Olaniyan AB (2019) Assessment of genetic diversity among low-nitrogen-tolerant early generation maize inbred lines using SNP markers. South Afr J Plant Soil 36:181–188

    Article  Google Scholar 

  • Akhi AH, Ahmed S, Karim ANMS, Begum F, Rohman MM (2017) Genetic divergence of exotic inbred lines of maize (Zea mays L). Bangladesh J Agril Res 42(4):665–671

    Article  Google Scholar 

  • Anđelković V, Drinić Mladenović S, Babić M, Delić N, Stanković G (2003) Gene expression profiling in response to heat and water stress in maize kernal. Genetika 35(3):139–147

    Article  Google Scholar 

  • Apbrebes (2016) The new seed law of Venezuela. Available online at: https://www.apbrebes.org/news/new-seed-law-venezuela?pk_campaign=NL22&utm_content=buffer34dc3&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer. Accessed 23 June 2021

  • Asghari F, Jahanshiri Z, Imani M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2016) Nanobiomaterials in antimicrobial therapy || Antifungal nanomaterials. Antifungal Nanomaterials: Synthesis, Properties, and Applications 6:343–383

    Google Scholar 

  • Azmach G, Gedil M, Menkir A, Spillane C (2013) Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol 13:227–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Azmach G, Menkir A, Spillane C, Gedil M (2018) Genetic loci controlling carotenoid biosynthesis in diverse tropical maize lines. G3-Genes Genomes Genet 8:1049–1065

    CAS  Google Scholar 

  • Babu R, Prasanna BM (2014) Molecular breeding for quality protein maize (QPM). In: Tuberosa R (ed) Genomics of plant genetic resources. Springer, pp 489–505

    Chapter  Google Scholar 

  • Babu R, Nair SK, Kumar A et al (2005a) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111:888–897

    Article  CAS  PubMed  Google Scholar 

  • Babu R, Nair SK, Kumar A et al (2005b) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111(5):888–897

    Article  CAS  PubMed  Google Scholar 

  • Babu R, Nair SK, Kumar A, Rao HS et al (2006) Mapping QTLs for popping ability in a popcorn 9 flint corn cross. Theor Appl Genet 112:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Badu-Apraku B, Akinwale R (2011) Identification of early-maturing maize inbred lines based on multiple traits under drought and low N environments for hybrid development and population improvement. Can J Plant Sci 91(5):931–942

    Google Scholar 

  • Badu-Apraku B, Annor B, Oyekunle M, Akinwale RO, Fakorede MAB, Talabi AO et al (2015) Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Res 183:169–183

    Article  Google Scholar 

  • Badu-Apraku B, Fakorede MAB, Gedil M, Annor B, Talabi AO, Akaogu I et al (2016a) Heterotic patterns of IITA and CIMMYT early-maturing yellow maize inbreds under contrasting environments. Agron J 108:321–1336

    Article  Google Scholar 

  • Badu-Apraku B, Fakorede MAB, Talabi AO, Oyekunle M, Akaogu IC, Akinwale RO et al (2016b) Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments. Crop Sci 56:83–199

    Article  Google Scholar 

  • Bänziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr Bull 21:397–400

    Article  Google Scholar 

  • Bates SL, Zhao J-Z, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Chandler VL, Schnable P (2001) National science foundation-sponsored workshop report. Maize genome sequencing project. Plant Physiol 127:1572–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertho L, Schmidt K, Schmidtke J, Brants I, Cantón RF, Novillo C et al (2020) Results from ten years of post-market environmental monitoring of genetically modified MON 810 maize in the European Union. PLoS ONE 15(4):e0217272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan M, Uauy C, Wulff B, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543:346–354

    Article  CAS  PubMed  Google Scholar 

  • Bhattramakki D, Dolan M, Hanafey R, Wineland R, Vaske JC, Register JC, Tingey SV, Rafalski A (2002) Insertion-deletion polymorphism in 3’ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547

    Article  CAS  PubMed  Google Scholar 

  • Boopathi NM (2020) Marker-Assisted Selection (MAS). Genetic mapping and marker assisted selection. Springer, Singapore, In

    Book  Google Scholar 

  • Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162(4):1945–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes G, Barfoot P (2006a) Global impact of biotech crops: Socio-economic and environmental effects in the first ten years of commercial use. AgBioForum 9(3):139–151

    Google Scholar 

  • Brookes G, Barfoot P (2006b) GM crops: the first ten years- global socio-economic and environmental impacts. ISAAA Briefs 36

    Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147(2):446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran S, Pukalenthy B, Adhimoolam K, Manickam D, Sampathrajan V, Chocklingam V, Eswaran K, Arunachalam K, Joikumarmeetei L, Rajasekaran R, Muthusamy V, Hossain F, Natesan S (2019) Marker-Assisted selection to pyramid the Opaque-2 (O2) and β-Carotene (crtRB1) genes in maize. Front Genet 10:859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268

    Article  CAS  PubMed  Google Scholar 

  • Chawade A, van Ham J, Blomquist H, Bagge O, Alexandersson E, Ortiz R (2019) High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 9(5):258

    Article  CAS  Google Scholar 

  • Chen F, Song Y, Li X, Chen J, Mo L, Zhang X, Lin Z, Zhang L (2019) Genome sequences of horticultural plants: past, present, and future. Hortic Res 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng HN, Klasson KT, Asakura T, Wu Q (2016) Nanotechnology in agriculture. In: Cheng HN, Doemeny L, Geraci CL, Schmidt DG (eds) Nanotechnology: Delivering on the Promise, vol 2. ACS, Washington, DC, pp 233–242

    Chapter  Google Scholar 

  • Chilcoat D, Liu Z-B, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci 149:27–46

    Article  CAS  PubMed  Google Scholar 

  • Chilcutt CF, Tabashnik BE (2004) Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize. Proceedings of the National Academy of Sciences of the UnitedStates of America. 101(20):7526–7529

    Article  CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Choukan R, Hossainzadeh A, Ghannadha MR et al (2006) Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranian maize inbred lines. Field Crops Res 95:212–222

    Article  Google Scholar 

  • Cocciolone SM, Nettleton D, Snook ME, Peterson T (2005) Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation. Plant Biotechnol J 3(2):225–235

    Article  CAS  PubMed  Google Scholar 

  • Coe EH, Sarkar KR (1966) Preparation of nucleic acids and a genetic transformation attempt in maize. Crop Sci 6:432–435

    Article  CAS  Google Scholar 

  • Cone KC, McMullen MD, Bi IV et al (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer J (2020) China moves toward commercialization of GMO corn and soy. Alliance Science, Ithaca, NY

    Google Scholar 

  • Danson JW, Mbogori M, Kimani M, Lagat M, Kuria A, Diallo A (2006) Marker assisted introgression of opaque2 gene into herbicide resistant elite maize inbred lines. African J Biotechnol 5(24):2417–2422

    CAS  Google Scholar 

  • Dhliwayo T, Pixley K, Menkir A, Warburton M (2009) Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci 49:1201–1210

    Article  Google Scholar 

  • Ding J-Q, Wang X-M, Chander S, Li J-S (2008) Identification of QTL for maize resistance to common smut by using recombinant inbred lines developed from the Chinese hybrid Yuyu22. J Appl Genet 49:147–154

    Article  PubMed  Google Scholar 

  • Disfani MN, Mikhak A, Kassaee MZ, Maghari A (2017) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agron Soil Sci 63:817–826

    Article  Google Scholar 

  • Dong L, Qi X, Zhu J, Liu C, Zhang X, Cheng B, Mao L, Xie C (2019) Super sweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnol J 17(10):1853–1855

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowd-Uribe B, Schnurr MA (2016) Burkina Faso’s reversal on genetically modified cotton and the implications for Africa. Afr Aff 115:161–172

    Article  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP et al (2005) Endosperm specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59(6):869–880

    Article  CAS  PubMed  Google Scholar 

  • Drinić Mladenovič S, Trifunović S, Drinić G, Konstantinov K (2002) Genetic divergence and its correlation to heterosis in maize as revealed by SSR-based markers. Maydicam 47:1–8

    Google Scholar 

  • Drinić G, Drinić Mladenović S, Barišić N (2000) Genetic relationship among maize inbred lines revealed by protein molecular markers. XVIII International conference on maize and sorghum genetics and breeding at the end of the 20th century, Maize and sorghum Eucarpia, Belgrade, june 4-9.

    Google Scholar 

  • Dubreuil P, Dufour P, Krejci E, Causse M, De Vienne D, Gallais A, Charcosset A (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799

    Article  Google Scholar 

  • Duvick DN, Cassman KG (1999) Post-green-revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci 29:1622–1630

    Article  Google Scholar 

  • Dwivedi SL, Crouch JH, Mackill DJ et al (2007) The molecularization of public sector crop breeding: progress, problems, and prospects. Adv Agron 95:163–318

    Article  CAS  Google Scholar 

  • Eathington SR, Dudley JW, Rufener GK II (1997) Usefulness of marker-QTL associations in early generation selection. Crop Sci 37(6):1686–1693

    Article  Google Scholar 

  • Edmeades GO, Trevisan W, Prasanna BM, Campos H (2017) Tropical maize (Zea mays L.). In: Campos H, Caligari PDS (eds) Genetic improvement of tropical crops. Springer, New York, pp 57–109

    Chapter  Google Scholar 

  • Edwards EJ (2011) Rapid report: New grass phylogeny resolves deep evolutionary relationships and discovers C 4 origins. New Phytol 193:304–312

    Google Scholar 

  • Elumalai R, Gchachu M, Pierson E, Chandler V, Galbraith DW (2002) Maize cDNA Microarrays. MNL 76:56

    Google Scholar 

  • Emrich SJ, Aluru S, Fu Y, Wen TJ, Narayanan M, Guo L, Ashlock DA, Schnable PS (2004) A strategy for assembling the maize (Zea mays L.) genome. Bioinformatics 20(2):140–147

    Article  CAS  PubMed  Google Scholar 

  • Engl (2019) Detection of food and feed plant products obtained by new mutagenesis techniques. Available online at: https://gmo-crl.jrc.ec.europa.eu/doc/JRC116289-GE-report-ENGL.pdf. Accessed 23 Jan 2021

  • Erić I (2004) Genetička karakterizacija ZP hibrida kukuruza iz različitih ciklusa selekcije primenom molekualrnih markera. Magistarski rad. Biološki fakultet, Univerzitet u Beogradu

    Google Scholar 

  • Erić I, Drinić Mladenović S, Konstantinov K, Stankovic G (2003) Genetic diversity among ZP maize hybrids from different selection cycles obtained by protein markers. MGNL 77:7–8

    Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R et al (2017) Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18:161

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2021) World Agricultural Production [Internet]. Available from: http://faostat.fao.org/default.aspx. Accessed on 14 June 2021

  • FAOSTAT (2018) Crop data. FAO United Nations, Rome. http://www.fao.org/faostat/en/#data/QC

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng F, Wang Q, Liang C et al (2015) Enhancement of tocopherols in sweet corn by marker-assisted backcrossing of ZmVTE4. 4 206:513–521

    CAS  Google Scholar 

  • Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE (2003) Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet 107(7):1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Fountain JC, Khera P, Yang L, Nayak SN, Scully BT, Lee RD et al (2015) Resistance to Aspergillus flavus in maize and peanut: molecular biology, breeding, environmental stress, and future perspectives. Crop J 3:229–237

    Article  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Emrich SJ, Guo L, Wen TJ, Ashlock DA, Aluru S, Schnable PS (2005) Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes. Proc Natl Acad Sci USA 102(34):12282–12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Wen T-J, Ronin YI, Chen HD et al (2006) Genetic dissection of intermated Recombinant Inbred Lines using a new genetic map of maize. Genetics 174:1671–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Sirk SJ, Shui SL, Liu J (2016) Genome-editing technologies: Principles and applications. Cold Spring Harb. Perspect.Biol 8(12):a023754

    Google Scholar 

  • Gakpo JO (2019) Egypt poised to again lead Africa in ag biotech innovation. Alliance Science, Ithaca, NY

    Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology - Silica breaks through in plants. Nat Nanotechnol 2:272–273

    Article  CAS  PubMed  Google Scholar 

  • Ganzleben C, Pels F, Hansen SF, Corden C, Grebot B, Sobey M (2011) Review of environmental legislation for the regulatory control of nanomaterials.http://ec.europa.eu/environment/chemicals/nanotech/pdf/review_legislation.pdf. Accessed 8 June 2021

  • Gao S, Martinez C, Skinner D, Krivanek A, Crouch JH, Xu Y (2008) Development of a single-seed based genotyping system for marker assisted selection in maize. MolBreed 22:477–494

    CAS  Google Scholar 

  • Garcia-Oliveira AL, Chander S, Ortiz R, Menkir A, Gedil M (2018) Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front Plant Sci 9:937

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg A, Prasanna BM, Sharma RC et al (2009) Genetic analysis and mapping of QTLs for resistance to banded leaf and sheath blight (Rhizoctonia solani f.sp. sasakii) in maize. In: Proceedings of 10th Asian regional maize workshop (October 20–23, 2008, Makassar, Indonesia). CIMMYT, Mexico DF. (in press)

    Google Scholar 

  • Gebremeskel S, Garcia-Oliveira AL, Menkir A, Adetimirin V, Gedil M (2018) Effectiveness of predictive markers for marker assisted selection of pro-vitamin A carotenoids in medium-late maturing maize (Zea mays L.) inbred lines. J Cereal Sci 79:27–34

    Article  CAS  Google Scholar 

  • George MLC, Prasanna BM, Rathore RS et al (2003) Identification of QTLs conferring resistance to downy mildews of maize in Asia. Theor Appl Genet 107:544–551

    Article  CAS  PubMed  Google Scholar 

  • George MLC, Regalado E, Li W et al (2004) Molecular characterization of Asian maize inbred lines by multiple laboratories. Theor Appl Genet 109:80–91

    Article  CAS  PubMed  Google Scholar 

  • Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops Food 8:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghorbanpour M, Fahimirad S (2017) Plant nanobionics a novel approach to overcome the environmental challenges. In: Ghorbanpour M, Varma A (eds) medicinal plants and environmental challenges. Springer International Publishing, Cham, Switzerland, pp 247–257

    Chapter  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400

    Article  CAS  PubMed  Google Scholar 

  • Global Agriculture (2016) Venezuela passes new seed law banning genetically modified crops. Available Online at: https://www.globalagriculture.org/whatsnew/news/en/31519.html. Accessed 31 Mar 2021

  • Golovkin MV, Abraham M, Morocz S, Bottka S, Feder A, Dudits D (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90:41–52

    Article  CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR Jr, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosal SS, Wani SH (2018) Plant Genetic Transformation and transgenic crops: Methods and applications. In: Gosal S, Wani S (eds) Biotechnologies of crop improvement, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_1

    Chapter  Google Scholar 

  • Goswami R, Rajkumar Uttamrao Z, Suphiya K, Aanchal B, Vignesh M, Firoz H, Thomas L (2019) Marker-assisted introgression of rare allele of β-carotene hydroxylase (crtRB1) gene into elite quality protein maize inbred for combining high lysine, tryptophan and provitamin A in maize. Plant Breed 138(2):174–183

    Article  CAS  Google Scholar 

  • Graham IG, Wolff D, Stuber C (1997) Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci 37:1601–1610

    Article  CAS  Google Scholar 

  • Grimsley N, Hohn T, Davies JW, Hohn B (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179

    Article  CAS  Google Scholar 

  • Gupta PK (2008) Single-molecule DNA sequencing technologies for future genomics research. Trend Biotechnol 26(11):602–611

    Article  CAS  Google Scholar 

  • Gupta Hari S, Babu R, Agrawal PK, Vinay M, Hossain F, Thirunavukkarasu N, Gupta P (2013) Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed 132(1):77–82

    Article  Google Scholar 

  • Gupta HS, Agrawal PK, Mahajan V et al (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237

    Google Scholar 

  • Guzmán C, Medina-Larqué AS, Velu G, González-Santoyo H, Singh RP, Huerta-Espino J et al (2014) Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentrations and desirable processing quality. J Cereal Sci 60:617–622

    Article  Google Scholar 

  • Haberer G, Young S, Bharti AK et al (2005) Structure and architecture of the maize genome. Plant Physiol 139(4):1612–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hake S, Ross-Ibarra J (2015) Genetic, evolutionary and plant breeding insights from the domestication of maize. ELife 4:1–8

    Article  Google Scholar 

  • Hallauer AR, Russel WA, Lamkay KR (1988) Corn breeding. In: Sprague GF, Dudley JW (eds) Corm and corn improvement, 3rd edn. Am Soc Agron, Madison, pp 463–564

    Google Scholar 

  • Hao Z, Li X, Xie C et al (2008) Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann Appl Biol 153:73–83

    Article  Google Scholar 

  • Hao X, Li X, Yang X et al (2014) Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize. Mol Breed 34:739–748

    Article  CAS  Google Scholar 

  • Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. Front Plant Sci 9:617

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B et al (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci USA 114:E9999–E10008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in Lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindu V, Palacios-Rojas N, Babu R, Suwarno WB, Rashid Z, Usha R et al (2018) Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theor Appl Genet 131:1443–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho JC, McCouch SR, Smith ME (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet 105(2-3):440–448

    Article  CAS  PubMed  Google Scholar 

  • Holloway AJ, Van Laar R, Tothill T, Owtell D (2002) Option available from start to finish for obtaining data from DNA microarrays II. Nat genet suppl 32:481–489

    Article  CAS  Google Scholar 

  • Hossain F, Nepolean T, Vishwakarma AK et al (2015) Mapping and validation of microsatellite markers linked to sugary1 and shrunken2 genes in maize (Zea mays L.). J Plant Biochem Biotechnol 24:135–142

    Article  CAS  Google Scholar 

  • Hossain F, Muthusamy V, Pandey N et al (2018) Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J Genet 97:287–298

    Article  CAS  PubMed  Google Scholar 

  • Hossain A, Skalicky M, Brestic M, Maitra S, Ashraful Alam M, Syed MA, Hossain J, Sarkar S, Saha S, Bhadra P, Shankar T, Bhatt R, Kumar Chaki A, EL Sabagh A, Islam T (2021) Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11(2):241

    Article  CAS  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Stein BD, Cheng H, Malyutin A, Tsvetkova IB, Baxter DV, Remmes NB, Verchot J, Kao C, Bronstein LM, Dragnea B (2011) Magnetic virus-like nanoparticles in N. benthamiana plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano 5:4037–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Kurata N, Wang Z-X, Wang A, Zhao Q, Zhao Y et al (2012a) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Zhao Y, Li C, Wang A, Zhao Q, Li W et al (2012b) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Article  Google Scholar 

  • ISAAA (2018) Global status of commercialized Biotech/GM crops in 2018: Executive Brief. ISAAA, Ithaca, NY

    Google Scholar 

  • ISAAA (2019) Global status of commercialized biotech/GM crops: ISAAA Brief No. 55. ISAAA: Ithaca, NY

    Google Scholar 

  • Ishida Y, Saito H, Ohta SH, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Islam T (2019) CRISPR-Cas technology in modifying food crops. CAB Reviews 14:1–16

    Article  Google Scholar 

  • Jiang G-L (2013) Molecular markers and marker-assisted breeding in plants, Plant Breeding from Laboratories to Fields, Sven Bode Andersen, IntechOpen, Available from: https://www.intechopen.com/books/plant-breeding-from-laboratories-to-fields/molecular markers-and-marker-assisted-breeding-in-plants

  • Jompuk C, Cheuchart P, Jompuk P, Apisitwanich S (2011) Improved tryptophan content in maize with Opaque-2 gene using marker assisted selection (MAS) in backcross and selfing generations. Kasetsart J (Nat Sci) 45:666–674

    CAS  Google Scholar 

  • Judy JD, Bertsch PM (2014) Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems. Adv Agron 123:1–64

    Article  CAS  Google Scholar 

  • Kahvejian A, Quackenbush J, Thompson JF (2008) What would you do if you could sequence everything? NatBiotechnol 26(10):1125–1133

    CAS  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48(5–6):501–510

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kaur G, Vikal Y et al (2020) Genetic enhancement of essential amino acids for nutritional enrichment of maize protein quality through marker assisted selection. Physiol Mol Biol Plants 26:2243–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanduri A, Tiwari A, Prasanna BM et al (2009) Conversion of elite maize lines in India into QPM versions using an integrated phenotypic and molecular marker-assisted selection strategy. In: Proceedings of 10th Asian regional maize workshop (October 20–23, 2008, Makassar, Indonesia). CIMMYT, Mexico DF. (in press)

    Google Scholar 

  • Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv 7:36492–36505

    Article  CAS  Google Scholar 

  • Konstantinov K, Mladenović S, Saratlić G, Gošić S, Tadić B, Šukalović V, Dumanović J (1993) Transgenic maize: disturbance of host genome expression by bacterial gene integration. In: « Breeding and molecular biology: accomplishment and future promises». Proc Maize and sorghum EUCARPIA, june. Bergamo, Italy, pp 6–9

    Google Scholar 

  • Kostadinovic M, Ignjatovic-Micic D, Vancetovic J, Ristic D, Bozinovic S, Stankovic G et al (2016) Development of high tryptophan maize near isogenic lines adapted to temperate regions through marker assisted selection - Impediments and benefits. PLoS ONE 11(12):e0167635

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishna MSR, Sokka Reddy S, Satyanarayana SDV (2017) Marker-assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7. 3 Biotech 7(3):165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Purkyastha S, Roy C, Ranjan T, Ranjan RD (2020) Genes for different abiotic stresses tolerance in wheat, plant stress physiology. Akbar Hossain, IntechOpen. Available from: https://www.intechopen.com/books/plant-stress-physiology/genes-for-different-abiotic-stresses-tolerance-in-wheat

    Google Scholar 

  • Kwak SY, Giraldo JP, Wong MH, Koman VB, Lew TTS, Ell J, Weidman MC, Sinclair RM, Landry MP, Tisdale WA (2017) A nanobionic light-emitting plant. Nano Lett 17:7951–7961

    Article  CAS  PubMed  Google Scholar 

  • Kyeter DT (1995) Genetic basis of tolerance in maize to maize streak virus using molecular markers. Ohio State University, Ohio, Ph.D.Thesis, 169pp

    Google Scholar 

  • Lahiani MH, Dervishi E, Chen JH, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    Article  CAS  PubMed  Google Scholar 

  • Landi P, Sanguineti MC et al (2007) Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot 58(2):319–326

    Article  CAS  PubMed  Google Scholar 

  • Lanza LB, Jr De Souza CL, Ottoboni LMM, Vieira MLC, De Souza AP (1997) Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor Appl Genet 94:1023–1030

    Article  CAS  Google Scholar 

  • Lee M, Sharopova N, Beavis WD et al (2002) Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population. Plant Mol Biol 48:453–461

    Article  CAS  PubMed  Google Scholar 

  • Leming SHI (2002) DNA microarray. www.gene-chips.com

  • Leushner J, Chiu NH (2000) Automated mass spectrometry: a revolutionary technology for clinical diagnostics. Mol Diagn 5(4):341–348

    Article  CAS  PubMed  Google Scholar 

  • Li Y-L, Dong Y-B, Niu S-Z (2006) QTL analysis of popping fold and the consistency of QTLs under two environments in popcorn. Acta Genetica Sinica 33:724–732

    Article  PubMed  Google Scholar 

  • Li XH, Wang ZH, Gao SH et al (2008) Analysis of QTL for resistance to head smut (Sporisorium reiliana) in maize. Field Crops Res 106:148–155

    Article  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J GenetGenom 41:63–68

    Article  CAS  Google Scholar 

  • Liu X, He D, Zhang H et al (2006) QTL mapping for resistance to MDMV2B in maize. J Agric Univ Hebei 29:56–59

    CAS  Google Scholar 

  • Liu X, Xie C, Zhao Q et al (2008a) Establishment of fluorescent SSR technique on detecting allelic frequency in maize (Zea mays L.) populations with bulk sampling strategy in China. Sci Agric Sin 41:3991–3998

    CAS  Google Scholar 

  • Liu J, Wang F, Wang L, Xiao S, Tong C, Tang D, Liu X (2008b) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Central South Uni Technol 15(6):768–773

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao ZY, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2003) Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet 107(3):494–502

    Article  CAS  PubMed  Google Scholar 

  • Lu GH, Tang JH, Yan J-B et al (2006) Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol 48:1233–1243

    Article  CAS  Google Scholar 

  • Lyons K (2010) Nanotechnology: Transforming food and the environment. Food First Backgr 16:1–4

    Google Scholar 

  • Mafu NF (2013) Marker-assisted selection for maize streak virus resistance and concomitant conventional selection for downy mildew resistance in a maize population. 177 pp. [MSc Thesis, University of KwaZulu-Natal]

    Google Scholar 

  • Magulama EE, Sales EK (2009) Marker-assisted introgression of opaque2 gene into elite maize inbred lines.USM. R D 17(2):131–135

    Google Scholar 

  • Maqbool MA, Issa ARB, Khokhar ES (2021) Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breed 140:375–399

    Article  CAS  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Sun W, Moeller L, Fang N, Trewyn BG, Lin VS, Wang K (2012) Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 8:413–422

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular Cre-protein delivery for maize genome editing via lox-P site excision. Plant Physiol 164:537–547

    Article  CAS  PubMed  Google Scholar 

  • Mehta BK, Vignesh M, Zunjare RU, Aanchal B, Chauhan HS, Chhabra R, Singh AK, Hossain F (2020) Biofortification of sweet corn hybrids for provitamin-A, lysine and tryptophan using molecular breeding. J Cereal Sci 96:103093

    Article  CAS  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis. ASA, CSSA, and SSSA, Madison, pp 99–118

    Google Scholar 

  • Melchinger AE, Messmer MM, Lee M, Woodman WL, Lamkey KR (1991) Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci 31:669–678

    Article  Google Scholar 

  • Melchinger AE, Boppenmaier J, Dhillon BS, Pollmer WG, Herrmann RG (1992) Genetic diversity for RFLPs in European maize inbreds, II. Relation to performance of hybrids within versus between heterotic groups for forage traits. Theor Appl Genet 84:672–681

    Article  CAS  PubMed  Google Scholar 

  • Mengesha WA, Menkir A, Unakchukwu N, Meseka S, Farinola A, Girma G et al (2017) Genetic diversity of tropical maize inbred lines combining resistance to Striga hermonthica with drought tolerance using SNP markers. Plant Breed 136:338–343

    Article  CAS  Google Scholar 

  • Menkir A (2008) Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem 110:454–464

    Article  CAS  PubMed  Google Scholar 

  • Menkir A, Brown RL, Bandyopadhyay R, Cleveland TE (2008) Registration of six tropical maize germplasm lines with resistance to aflatoxin contamination. J Plant Regist 2:246–250

    Article  Google Scholar 

  • Menkir A, Franco J, Adepoju A, Bossey B (2012) Evaluating consistency of resistance reactions of open-pollinated maize cultivars (Del.) Benth under artificial infestation. Crop Sci 52:1051–1060

    Article  Google Scholar 

  • Menkir A, Kling JG, Anjorin B, Ladejobi F, Gedil M (2015) Evaluating testcross performance and genetic divergence of lines derived from reciprocal tropical maize composites. Maydica 60:1–10

    Google Scholar 

  • Meseka S, Menkir A, Bossey B, Mengesha W (2018) Performance assessment of drought tolerant maize hybrids under combined drought and heat stress. Agronomy 8:274

    Article  PubMed  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM et al (2004) Sequence composition and genome organization of maize. Proceedings of the National Academy of Sciences of the United States of America 101(40):14349–14354

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra P, Shukla PK, Pramanik K, Gautam S, Kole C (2016) Nanotechnology for crop improvement. In: Khodakovskaya M (ed) Kole C, Kumar D. Plant Nanotechnology. Springer, Cham, pp 219–256

    Google Scholar 

  • Mohammadi SA, Prasanna BM, Sudan C, Singh NN (2002) A microsatellite marker based study of chromosomal regions and gene effects on yield and yield components in maize. Cell Mol Biol Letters 7:599–606

    CAS  Google Scholar 

  • Mohammadi SA, Prasanna BM, Sudan C, Singh NN (2008) SSR heterogenic patterns of maize parental lines and prediction of heterotic performance. Biotechnol Biotech Eq 22:541–547

    Article  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Molla KA, Karmakar S, Islam MT (2020) Wide Horizons of CRISPR-Cas-derived technologies for basic biology, agriculture, and medicine. In: Islam MT, Bhowmik PK, Molla KA (eds) CRISPR-Cas methods. Springer Protocols Handbooks. Humana, New York, NY

    Google Scholar 

  • Morris M, Dreher K, Ribaut J-M, Khairallah M (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker assisted selection. Mol Breed 11:235–247

    Article  Google Scholar 

  • Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2(1):247

    Article  PubMed  PubMed Central  Google Scholar 

  • Mout R, Ray M, Yesilbag Tonga G, Lee Y-W, Tay T, Sasaki K, Rotello VM (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleo protein for efficient gene editing. ACS Nano 11:2452–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S et al (2014) Development of b-carotene rich maize hybrids through marker-assisted introgression of b-carotene hydroxylase allele. PLoS ONE 9(12):e113583

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Equip 32(2):261–285

    Article  CAS  Google Scholar 

  • Nair SK, Babu R, Magorokosho C, Mahuku G, Semagn K, Beyene Y et al (2015) Fine mapping of Msv1, a major QTL for resistance to maize streak virus leads to development of production markers for breeding pipelines. Theor Appl Genet 128:1839–1854

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106(19):7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natesan S, Duraisamy T, Pukalenthy B, Chandran S, Nallathambi J, Adhimoolam K, Manickam D, Sampathrajan V, Muniyandi SJ, Meitei LJ, Thirunavukkarasu N, Kalipatty Nalliappan G, Rajasekaran R (2020) Enhancing β-Carotene concentration in parental lines of CO6 maize hybrid through marker-assisted backcross breeding (MABB). Front Nutr 7:134

    Article  PubMed  PubMed Central  Google Scholar 

  • National Corn Growers Association (2018) World corn production, National Corn Growers Association (sourced from USDA, FAS Grain: World Markets and Trade) http://www.worldofcorn.com/#world-corn-production. Accessed 12 Jan 2021

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104(42):16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta S, Ishida Y, Usami S (2004) Expression of cold-tolerant pyruvate, orthophosphate dikinase cDNA, and heterotetramer formation in transgenic maize plants. Transgenic Res 13(5):475–485

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Garc´ıa S, Ezcurra E, Schoel B, Acevedo F, Soberon J, Snow AA (2005) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004). Proc Natl Acad Sci USA 102(35):12338–12343

    Article  PubMed  Google Scholar 

  • Oyetunde OA, Badu-Apraku B, Ariyo OJ, Alake CO (2020) Efficiencies of heterotic grouping methods for classifying early maturing maize inbred lines. Agron 10(8):1198

    Article  Google Scholar 

  • Paliwal RL, Granados G, Lafitte HR, Violic AD, Marathee JP (2000) Tropical maize: Improvement and production, food and agriculture organization of the Unites Nations. Rome, Italy

    Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, Dike S, de la Bastide M, Martienssen RA, McCombie WR (2003a) Maize genome sequencing by methylation filtration. Sci 302(5653):2115–2117

    Article  Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL et al (2003b) Maize genome sequencing by methylation filtration. Sci 302(5653):2115–2117

    Article  Google Scholar 

  • Pan CT, Ye L, Qin L, Liu X, He YJ, Wang J et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul SK, Akter T, Islam T (2021) Chapter 32 - Gene editing in filamentous fungi and oomycetes using CRISPR-Cas technology. In: Abd-Elsalam KA, Lim K-T (eds) Nanobiotechnology for Plant Protection, CRISPR and RNAi Systems. Elsevier, pp 723–753

    Chapter  Google Scholar 

  • Pejić I, Ajmon Marsan P, Morgante M, Kozumplick V, Castoglioni P, Taramini G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSR and AFLPs. Theor Appl Genet 97:1248–1255

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prasanna BM, Hoisington D (2003) Molecular breeding for maize improvement: an overview. Indian J Biotech 2:85–98

    CAS  Google Scholar 

  • Prasanna BM, Vasal SK, Kassahun B, Singh NN (2001) Quality protein maize. Curr Sci 81:1308–1319

    CAS  Google Scholar 

  • Prasanna BM, Beiki AH, Sekhar JC, Srinivas A, Ribaut J-M (2009a) Mapping QTLs for component traits influencing drought stress tolerance of maize in India. J Plant Biochem Biotech 18:151–160

    Article  CAS  Google Scholar 

  • Prasanna BM, Hettiarachchi K, Mahatman K et al. (2009b) Molecular marker-assisted pyramiding of genes conferring resistance to Turcicum leaf blight and Polysora rustin maize inbred lines in India. In: Proceedings of 10th Asian regional maize workshop (October 20–23, 2008, Makassar, Indonesia). CIMMYT, Mexico DF

    Google Scholar 

  • Prasanna BM, Mazumdar S, Chakraborti M, Hossain F, Manjaiah KM, Agrawal PK et al (2011) Genetic variability and genotype × year interactions for kernel iron and zinc concentration in maize (Zea mays L.). Indian J Agric Sci 81:704–711

    CAS  Google Scholar 

  • Puchta H, Hohn B (2010) Breaking news: plants mutate right on target. Proc Natl Acad Sci USA 107:1165–11658

    Article  Google Scholar 

  • Pukalenthy B, Manickam D, Chandran S, Adhimoolam K, Sampathrajan V, Rajasekaran R, Arunachalam K, Ganapathyswamy H, Chocklingam V, Muthusamy V, Hossain F, Natesan S (2019) Incorporation of opaque-2 into ‘UMI 1200’, an elite maize inbred line, through marker-assisted backcross breeding. Biotechnol Equip 33(1):144–153

    Article  CAS  Google Scholar 

  • Puttarach J, Puddhanon P, Siripin S, Sangtong V, Songchantuek S (2016) Marker assisted selection for resistance to northern corn leaf blight in sweet corn. SABRAO J Breed Genet 48(1):72–79

    Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A 111:5135–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Improved chilling tolerance by transformation with beta gene for the enhancement of glycinebetaine synthesis in maize. Plant Science 166(1):141–149

    Article  CAS  Google Scholar 

  • Quarrie S, Lazić-Jančić V, Kovačević D, Steed A, Pekić S (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306

    Article  CAS  Google Scholar 

  • Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton M-DM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379

    Article  PubMed  PubMed Central  Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414(6863):541–543

    Article  CAS  PubMed  Google Scholar 

  • Quist D, Chapela IH (2002) Communications arising: response to criticism of transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 416:602–603

    Article  CAS  Google Scholar 

  • Rabinowicz PD, Bennetzen JL (2006) The maize genome as a model for efficient sequence analysis of large plant genomes. CurrOpinPlant Biol 9(2):149–156

    CAS  Google Scholar 

  • Racuciu M, Creang DE (2007) Journal of Magnetism and Magnetic Materials 311:291–294

    Article  CAS  Google Scholar 

  • Ran Y, Liang Z, Gao C (2017) Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60:490–505

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Hamrit S, Heckenberger M, Schipprack W, Peter Maurer H, Bohn M, Melchinger AE (2005) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111(5):906–913

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    Article  CAS  PubMed  Google Scholar 

  • Ribaut J-M, Ragot M (2007a) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Expe Bot 58(2):351–360

    Article  CAS  Google Scholar 

  • Ribaut JM, Ragot M (2007b) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58(2):351–360

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Betran J, Dreher K, Pixley K, Hoisington D (2001) Marker-assisted selection in maize: strategies, examples and costs. Plant and animal genome IX conference.13-13.01.2001. California.

    Google Scholar 

  • Ribaut JM, Anziger MB, Betran J et al (2002) In: Kang MS (ed) Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize in Quantitative Genetics, Genomics, and Plant Breeding. CABI Publishing, pp 85–99

    Chapter  Google Scholar 

  • Rizwan M, Ali S, Rehhman MZ, Andrees M, Arshad M, Qayyum MF et al (2019) Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ Pol 248:358–367

    Article  CAS  Google Scholar 

  • Sabry A, Jeffers D, Vasal SK, Frederiksen R, Magill C (2006) A region of maize chromosome 2 affects response to downy mildew pathogens. Theor Appl Genet 113:321–330

    Article  CAS  PubMed  Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197

    Google Scholar 

  • Salazar MP, Valenzuela D, Tironi M, Gutiérrez RA (2019) The ambivalent regulator: the construction of a regulatory style for genetically modified crops in Chile. Tapuya Lat Am Sci Technol Soc 2:199–219

    Article  Google Scholar 

  • Sánchez MA, León G (2016) Status of market, regulation and research of genetically modified crops in Chile. N Biotechnol 33:815–823

    Article  PubMed  Google Scholar 

  • Sarika K, Hossain F, Muthusamy V, Zunjare RU, Baveja A, Goswami R, Bhat JS, Saha S, Gupta HS (2018) Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Sci 272:142–152

    Article  CAS  PubMed  Google Scholar 

  • Schlotterer C (2004) The evolution of molecular markers – just a matter of fashion? Nat Rev Genet 5(1):63–69

    Article  PubMed  Google Scholar 

  • Schütte G, Eckerstorfer M, Rastelli V, Reichenbecher W, Restrepo-Vassalli S, Ruohonen-Lehto M, Saucy AW, Mertens M (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Euro 29(1):5

    Article  Google Scholar 

  • Shaw SH, Carrasquillo MM, Kashuk C, Puffenberger EG, Chakravarti A (1998) Allele frequency distributions in pooled DNA samples: applications to mapping complex disease genes. Genome Res 8:111–123

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (1993) Protein phosphatase activity is required for light inducible gene expression in maize. EMBO J 12(9):3497–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with complementary DNA microarray. Sci 270:467–470

    Article  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte R, Archibald RL, Yang M, Hakimi SH, Mo H, Habben J (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain under field drought stress conditions. Plant Biotechnol J 15:2017–2216

    Article  Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J et al (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec 3:307

    Article  Google Scholar 

  • Shou H, Bordallo P, Fan J-B et al (2004) Expression of an active tobacco mitogen-activated protein kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101(9):3298–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla VP, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Sharma S, Kaur A et al (2021) Marker-assisted pyramiding of lycopene-ε-cyclase, β-carotene hydroxylase1 and opaque2 genes for development of biofortified maize hybrids. Sci Rep 11:12642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phyto-toxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254

    Article  CAS  PubMed  Google Scholar 

  • Smith OS, Smith JSC, Bowen SL, Tenborg RA, Wall SJ (1990) Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield heterosis and RFLPs. Theor Appl Genet 80:833–840

    Article  CAS  PubMed  Google Scholar 

  • Song X-F, Song T-M, Dai J-R, Rocheford T, Li J-S (2004) QTL mapping of kernel oil concentration with high-oil maize by SSR markers. Maydica 49:41–48

    Google Scholar 

  • Springer NM, Xu X, Barbazuk WB (2004) Utility of different gene enrichment approaches toward identifying and sequencing the maize gene space. Plant Physiol 136(2):3023–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111(4):723–730

    Article  PubMed  Google Scholar 

  • Stuber CW (1995) Mapping and manipulating quantitative traits in maize. Trends Genet 11(12):477–481

    Article  CAS  PubMed  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Stuber C, Lincon SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genet 132:823–839

    Article  CAS  Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39(6):1571–1583

    Article  Google Scholar 

  • Sugunan A, Dutta J (2008) Pollution treatment, remediation and sensing. In: Harald K (ed) Nanotechnology. Wiley-VCH, Weinheim 3:125–143

    Google Scholar 

  • Sumathi K, Ganesan KN, Aarthi P et al (2020) Introgression of QTLs determining sorghum downy mildew (SDM) resistance into elite maize line UMI 79 through marker-assisted backcross breeding (MABC). Aus Plant Pathol 49:159–165

    Article  CAS  Google Scholar 

  • Sureshkumar S, Tamilkumar P, Senthil N, Nagarajan P, Thangavelu AU, Raveendran M, Vellaikumar S, Ganesan KN, Balagopal R, Vijayalakshmi G, Shobana V (2014a) Marker assisted selection of low phytic acid trait in maize (Zea mays L.). Hereditas 151(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Sureshkumar S, Paramasivam T, Thangavelu AU, Senthil N, Nagarajan P, Vellaikumar S, Ganesan KN, Balagopal R, Raveendran M, Lübberstedt T (2014b) Marker-assisted introgression of lpa2 locus responsible for low-phytic acid trait into an elite tropical maize inbred (Zea mays L.). Plant Breed 133(5):566–578

    Article  CAS  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan MA (2015) Targeted mutagenesis, precise gene editing, and site specific gene insertion in maize using Cas9 guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan MA (2016) Genome editing in maize by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, Holland J, Kruse-Peeples M, Lepak N, Prim L, Cinta Romay M, Ross-Ibarra J, de Jesus Sanchez-Gonzalez J, Schmidt C, Schuenemann VJ, Krause J, Matson RG, Weigel D, Buckler ES, Burbano HA (2017) Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Sci 357:512–515

    Article  CAS  Google Scholar 

  • Tamilkumar P, Senthil N, Sureshkumar S, Thangavelu AU, Nagarajan P, Vellaikumar S, Ganesan KN, Natarajan N, Balagopal R, Nepolean T, Raveendran M (2014) Introgression of low phytic acid locus (lpa2-2) into an elite Maize (Zea mays L.) inbred through marker assisted backcross breeding. Aus J Crop Sci 8(8):1224–1231

    Google Scholar 

  • Tanumihardjo S, McCulley L, Roh R, Lopez-Ridaura S, Palacios-Rojas N, Gunaratna N (2019) Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob Food Sec 25:100327

    Article  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  • Tarca AL, Romero R, Draghici S (2006) Analysis of microarray experiments of gene expression profiling. Am J Obstet Gynecol 195(2):373–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teama S (2018) DNA polymorphisms: DNA-based molecular markers and their application in medicine, genetic diversity and disease susceptibility. Yamin Liu, IntechOpen. Available from: https://www.intechopen.com/books/genetic-diversity-and-disease-susceptibility/dna-polymorphisms-dna-based-molecular-markers-and-their-application-in-medicine

    Google Scholar 

  • Teng WT, Can JS, Chen YH et al (2004) Analysis of maize heterotic groups and patterns during past decade in China. Sci Agric Sin 37:1804–1811

    Google Scholar 

  • Tie S, Xia J, Qiu F, Zheng Y (2006) Genome-wide analysis of maize cytoplasmic male sterility-S based on QTL mapping. Plant Mol Biol Reporter 24:71–80

    Article  CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas Garcia SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 2:577–591

    Article  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tripathy SK, Lenka D, Ithape DM, Maharana M (2017) Development of opaque-2 introgression line in maize using marker assisted backcross breeding. Plant Gene 10:26–30

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002) Mapping QTLS regulating morphophysiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Anna Bot 89:941–963

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Giuliani S et al (2007) Genome-wide approaches to investigate and improve maize response to drought. Crop Sci 47:S120–S141

    Article  Google Scholar 

  • Turnbull C, Lillemo M, Hvoslef-Eide TAK (2021) Global regulation of genetically modified crops amid the gene edited crop boom – A review. Front Plant Sci 12:630396

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulukan H (2009) The evolution of cultivated plant species: classical plant breeding versus genetic engineering. Plant Syst Evol 280:133–142

    Article  Google Scholar 

  • USDA FAS (2018) GAIN Report: Agricultural Biotechnology Annual -Venezuela. Available Online at: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=AgriculturalBiotechnologyAnnual_Caracas_Venezuela_12-20-2018. Accessed 23 Oct 2020

  • Vignesh M, Firoz HT, Nepolean SS, Agrawal PK, Guleria SK, Prasanna BM, Gupta HS (2012) Genetic variability for kernel b-carotene and utilization of crtRB1 3’TEgene for biofortification in maize (Zea mays L.). Indian J Genet 72(2):189–194

    CAS  Google Scholar 

  • Vijayakumar PS, Abhilash OU, Khan BM, Prasad BLV (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20:2416–2423

    Article  CAS  Google Scholar 

  • Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654–660

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-Y, Sun X-F, Wang F, Tang K-X, Zhang J-R (2005) Enhanced resistance of snowdrop lectin (Galanthus nivalis L. agglutinin)-expressing maize to Asian corn borer (Ostrinia furnacalis Guen´ee). JIntegrPlant Biol 47(7):873–880

    CAS  Google Scholar 

  • Wanga MA, Hussein S, Jacob M, Laing MD (2021) Opportunities and challenges of speed breeding: A review. Plant breed 140(2):185–194

    Article  Google Scholar 

  • Warburton ML, Williams WP, Windham GL, Murray SC, Xu W, Hawkins LK et al (2013) Phenotypic and genetic characterization of a maize association mapping panel developed for the identification of new sources of resistance to and aflatoxin accumulation. Crop Sci 53:2374–2383

    Article  CAS  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, van Heeringen S, Karamycheva S, Bennetzen JL, San Miguel P, Lakey N, Bedell J, Yuan Y, Budiman MA, Resnick A, Van Aken S, Utterback T, Riedmuller S, Williams M, Feldblyum T, Schubert K, Beachy R, Fraser CM, Quackenbush J (2003a) Enrichment of gene-coding sequences in maize by genome filtration. Sci 302(5653):2118–2120

    Article  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, Van Heeringen S, Karamycheva S, Bennetzen JL, SanMiguel P, Lakey N, Bedell J, Yuan Y, BudimanMA RA, Van Aken S, Utterback T, Riedmuller S, Williams M, Feldblyum T, Schubert K, Beachy R, Fraser CM, Quackenbush J (2003b) Enrichment of gene-coding sequences in maize by genome filtration. Sci 302(5653):2118–2120

    Article  Google Scholar 

  • Willcox MC, Khairallah MM, Bergvinson D, Crossa J, Deutsch J, Edmeades G, González-de-León D, Jiang C, Jewell D, Mihm J, Williams W, Hoisington D (2002) Selection for resistance to southwestern corn borer using marker assisted and conventional backcrossing. Crop Sci 42(5):1516–1528

    Article  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathol 96:120–129

    Article  CAS  Google Scholar 

  • Wong MH, Giraldo JP, Kwak S-Y, Koman VB, Sinclair R, Lew TTS, Bisker G, Liu P, Strano MS (2017) Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics Nat Mater 16:264

    CAS  PubMed  Google Scholar 

  • Wu Y, Li X, Zhang Z et al (2008) Genomic DNA sequence, gene structure, conserved domains, and natural alleles of Gln1-3 gene in maize. Acta Agrono Sin 34:1114–1120

    Article  CAS  Google Scholar 

  • Wu Y, Li X, Hao Z, Xie C (2009) Genomic DNA sequence, gene structure, conserved domains, and natural alleles of Gln1-4 gene in maize. Acta Agron Sin 35:983–991

    Google Scholar 

  • Xia JH, Zheng YL (2002) Molecular marker-assisted backcross breeding of maize Rf3 NIL and its efficient analysis. Acta Agrono Sin 28:339–344

    Google Scholar 

  • Xiao YN, Li XH, George ML, Li MS, Zhang SH, Zheng YL (2005) Quantitative trait loci analysis of drought tolerance and yield in maize in China. Plant Mol Biol Reporter 23:155–165

    Article  CAS  Google Scholar 

  • Xiaodong W (2020) GMO crops set to pass biosafety tests. Available Online at: https://www.chinadaily.com.cn/a/202001/02/WS5e0d28cfa310cf3e35581e9f.html Accessed 28 June 2021

  • Xie C, Zhang S, Li M, Li X, Hao Z, Bai L, Zhang D, Liang Y (2007) Inferring genome ancestry and estimating molecular relatedness among 187 Chinese maize inbred lines. J Genet Genom 34:738–748

    Article  Google Scholar 

  • Xie CX, Warburton M, Li MS, Li XH, Xiao MJ, Hao ZF, Zhao Q, Zhang SH (2008) An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed 21:407–418

    Article  Google Scholar 

  • Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Crouch JH (2008a) In: Moore PH, Ming R (eds) Genomics of tropical maize, a stable food and feed across the world in Genomics of Tropical Crop Plants. Springer, London, pp 333–370

    Google Scholar 

  • Xu Y, Crouch JH (2008b) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48(2):391–407

    Article  Google Scholar 

  • Xu S-X, Liu J, Liu J-S (2005) The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas 141:207–215

    Article  Google Scholar 

  • Xu Y, Skinner DJ, Wu H, Palacios-Rojas N, Araus JL, Yan J, Gao S, Warburton ML, Crouch JH (2009) Advances in maize genomics and their value for enhancing genetic gains from breeding. Int J Plant Genomics 2009:1

    Google Scholar 

  • Xu Z, Hua J, Wang F, Cheng Z, Meng Q, Chen Y, Han X, Tie S, Liu C, Li X, Wang Z, Weng J (2020) Marker-assisted selection of qMrdd8 to improve maize resistance to rough dwarf disease. Breed Sci 70(2):183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y (2009) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451

    Article  Google Scholar 

  • Yan J, Kandianis CB, Harjes CE, Bai L, Kim E-H, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu M, Fu Y, Palacios N, Li J, Penna DD, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mayscrtRB1 increases b-carotene in maize grain. Nat Genet 42:322–329

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Gondikas A, Marinakos S, Auffan M, Liu J, Kim H, Meyer J (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Yan Z, Wang Q, Li X, Feng F (2018) Marker-assisted backcrossing of lcyE for enhancement of proA in sweet corn. Euphytica 214:130

    Article  Google Scholar 

  • Yin X-Y, Yang A-F, Zhang K-W, Zhang J-R (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 46(7):854–861

    CAS  Google Scholar 

  • Yousef GG, Juvik JA (2002) Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Sci 42(1):96–104

    PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs W, Irie VB, Masanori Y, John FD, Michael DM, Brandon SG, Dahlia MN, James BH, Stephen K, Edward SB (2006)A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet38:203–208

    Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ED (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu K, Wang H, Liu X, Xu C, Li Z, Xu X, Liu J, Wang Z, Xu Y (2020) Large-Scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources. Front Plant Sci 11:660

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan LX, Fu JH, Zhang SH, Liu X-Z, Peng Z-B, Li X-H, Warburton M, Khairallah M (2001) Heterotic grouping of maize inbred lines using RFLP and SSR markers. Acta Agron Sin 27:149–156

    Google Scholar 

  • Yuvakumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3(1):180–190

    Article  Google Scholar 

  • Zhang SH, Li XH, Wang ZH, George MLC, Jeffers DP, Wang FG, Liu XD, Li MS, Yuan LX (2003) QTL mapping for resistance to SCMV in Chinese maize germplasm. Maydica 48:307–312

    Google Scholar 

  • Zhang F, Wan X-Q, Pan G-T (2006) QTL mapping of Fusarium moniliforme ear rot resistance in maize. 1. Map construction with microsatellite and AFLP markers. J Appl Genet 47:9–15

    Article  PubMed  Google Scholar 

  • Zhang ZM, Zhao MJ, Ding HP, Ma YY, Rong TZ, Pan GT (2007) Analysis of the epistatic and QTL x environments interaction effects of plant height in maize (Zea mays L.). Int J Plant Prod 2:153–162

    Google Scholar 

  • Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  • Zhao M, Zhang Z, Zhang S, Li W, Jeffers DP, Rong T, Pan G (2006a) Quantitative trait loci for resistance to Banded Leaf and Sheath Blight in maize. Crop Sci 46:1039–1045

    Article  Google Scholar 

  • Zhao W, Canaran P, Jurkuta R, Fulton T, Glaubitz J, Buckler E, Doebley J, Gaut B, Goodman M, Holland J, Kresovich SM, McMullen M, Stein L, Ware D (2006b) Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucl Acids Res 34:D725–D757

    Article  Google Scholar 

  • Zhao X, Tan G, Xing Y, Wei L, Chao Q, Zuo W, Lübberstedt T, Xu M (2012) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breeding 30(2):1077–1088

    Article  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Element Res 104:83–91

    Article  CAS  Google Scholar 

  • Zunjare RU, Hossain F, Muthusamy V, Baveja A, Chauhan HS, Bhat JS, Thirunavukkarasu N, Saha S, Gupta HS (2018) Development of biofortified maize hybrids through marker-assisted stacking of β-Carotene Hydroxylase, Lycopene-ε-Cyclase and Opaque2 Genes. Front Plant Sci 9:178

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, M. et al. (2023). Current Biotechnological Approaches in Maize Improvement. In: Wani, S.H., Dar, Z.A., Singh, G.P. (eds) Maize Improvement. Springer, Cham. https://doi.org/10.1007/978-3-031-21640-4_8

Download citation

Publish with us

Policies and ethics