Skip to main content

Dissection of QTLs for Biotic Stress Resistance in Maize

  • Chapter
  • First Online:
Maize Improvement

Abstract

Biotic stresses are major concerns for the world’s food security. These, commonly induced by diseases and/or insect pests, are one of the primary reasons for maize yield and quality losses. About 10% of the annual maize production is reduced because of biotic stresses globally. Diseases, particularly by fungal pathogens, lead to significant yield decline. Among the insect pests, the herbivorous insects are the major culprits of total yield losses. Moreover, the origin of new pathogens and insects, evolution of new races or strains with time due to climate change and development of pesticide resistance are the other major concerns. Development and deployment of stress-tolerant genotypes is the economically and environmentally viable option to manage biotic stresses. In contrast to the cereals like wheat and rice, quantitative resistance is more important in maize owing to its pollination mode and nature of causal organism. The quantitative trait loci (QTLs) or genomic regions imparting tolerance/resistance to pathogens and insect pests have been identified in maize. This chapter is an attempt to archive all these findings in a referable format to be useful for both students and researchers working in biotic stress resistance research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Rahman MM, Bayoumi SR, Barakat MN (2016) Identification of molecular markers linked to Fusarium ear rot genes in maize plants Zea mays L. Biotechnol Biotechnol Equip 30(4):692–699

    Article  CAS  Google Scholar 

  • Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser G, Erb M, Flors V, Frey M, Ton J (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali ML, Taylor JH, Jie L, Sun G, William M, Kasha KJ, Reid LM, Pauls KP (2005) Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48(3):521–533

    Article  CAS  PubMed  Google Scholar 

  • Awata LAO, Ifie BE, Danquah E, Jumbo MB, Suresh LM, Gowda M, Marchelo-Dragga PW, Olsen MS, Shorinola O, Yao NK, Boddupalli PM, Tongoona PB (2021) Introgression of maize lethal necrosis resistance quantitative trait loci into susceptible maize populations and validation of the resistance under field conditions in Naivasha, Kenya. Front Plant Sci 12:699

    Article  Google Scholar 

  • Badji A, Otim M, Machida L, Odong T, Kwemoi DB, Okii D, Agbahoungba S, Mwila N, Kumi F, Ibanda A, Mugo S, Kyamanywa S, Rubaihayo P (2018) Maize combined insect resistance genomic regions and their co-localization with cell wall constituents revealed by tissue-specific QTL meta-analyses. Front Plant Sci 9:895

    Article  PubMed  PubMed Central  Google Scholar 

  • Badji A, Kwemoi DB, Machida L, Okii D, Mwila N, Agbahoungba S, Kumi F, Ibanda A, Bararyenya A, Solemanegy M, Odong T (2020) Genetic basis of maize resistance to multiple insect pests: integrated genome-wide comparative mapping and candidate gene prioritization. Genes 11(6):689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badu-Apraku B, Gracen VE, Bergstrom GC (1987) A major gene for resistance to anthracnose stalk rot in maize. Phytopathology 77:957–959

    Article  Google Scholar 

  • Baer O, Laude T, Reano C, Gregorio G, Diaz M, Pabro L, Tamba L, Baltazar N, Fabreag M, Pocsedio A, Kumar A (2021) Diplodia ear rot resistance QTL identified in maize (Zea mays L.) using multi-parent double-haploid population mapping. SABRAO J Breed Genet 53(1)

    Google Scholar 

  • Baladhiya HC, Sisodiya DB, Pathan NP (2018) A review on pink stem borer, Sesamia inferens Walker: a threat to cereals. J Entomol Zool Stud 6(3):1235–1239

    Google Scholar 

  • Balint-Kurti PJ, Johal GS (2009) Maize disease resistance. In: Handbook of maize: its biology. Springer, New York, pp 229–250

    Chapter  Google Scholar 

  • Balint-Kurti PJ, Krakowsky MD, Jines MP, Robertson LA, Molnár TL, Goodman MM, Holland JB (2006) Identification of quantitative trait loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population. Phytopathology 96(10):1067–1071

    Article  CAS  PubMed  Google Scholar 

  • Balint-Kurti PJ, Zwonitzer JC, Wisser RJ, Carson ML, Oropeza-Rosas MA, Holland JB, Szalma SJ (2007) Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176(1):645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balint-Kurti PJ, Wisser R, Zwonitzer JC (2008a) Use of an advanced intercross line population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci 48(5):1696–1704

    Article  Google Scholar 

  • Balint-Kurti PJ, Zwonitzer JC, Pe ME, Pea G, Lee M, Cardinal AJ (2008b) Identification of quantitative trait loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations. Phytopathology 98:315–320

    Article  CAS  PubMed  Google Scholar 

  • Benson JM, Poland JA, Benson BM, Stromberg EL, Nelson RJ (2015) Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis. PLoS Genet 11(3):e1005045

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian Y, Yang Q, Balint-Kurti PJ, Wisser RJ, Holland JB (2014) Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population. BMC Genomics 15(1):1–15

    Article  Google Scholar 

  • Bohn M, Schulz B, Kreps R, Klein D, Melchinger AE (2000) QTL mapping for resistance against the European corn borer (Ostrinia nubilalis H.) in early maturing European dent germplasm. Theor Appl Genet 101(5):907–917

    Article  CAS  Google Scholar 

  • Brauner PC, Melchinger AE, Schrag TA, Utz HF, Schipprack W, Kessel B, Ouzunova M, Miedaner T (2017) Low validation rate of quantitative trait loci for Gibberella ear rot resistance in European maize. Theor Appl Genet 130:175–186

    Article  CAS  PubMed  Google Scholar 

  • Brooks TD, Willcox MC, Williams WP, Buckley PM (2005) Quantitative trait loci conferring resistance to fall armyworm and southwestern corn borer leaf feeding damage. Crop Sci 45(6):2430–2434

    Article  CAS  Google Scholar 

  • Brooks TD, Bushman BS, Williams WP, McMullen MD, Buckley PM (2007) Genetic basis of resistance to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) leaf-feeding damage in maize. J Econ Entomol 100(4):1470–1475

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218

    Article  CAS  PubMed  Google Scholar 

  • Butron A, Santiago R, Cao A, Samayoa LF, Malvar RA (2019) QTLs for resistance to fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Dis 103(5):897–904

    Article  CAS  PubMed  Google Scholar 

  • Cardinal AJ, Lee M, Sharopova N, Woodman-Clikeman WL, Long MJ (2001) Genetic mapping and analysis of quantitative trait loci for resistance to stalk tunneling by the European corn borer in maize. Crop Sci 41(3):835–845

    Article  CAS  Google Scholar 

  • Carson ML, Hooker AL (1981) Inheritance of resistance to stalk rot of corn caused by Colletotrichum graminicola. In: Carson ML (ed). The American Phytopathological Society, Phytopathology, vol 71, p 1190

    Google Scholar 

  • Carson ML, Stuber CW, Senior ML (2004) Identification and mapping of quantitative trait loci conditioning resistance to southern leaf blight of maize caused by Cochliobolus heterostrophus race O. Phytopathology 94(8):862–867

    Article  CAS  PubMed  Google Scholar 

  • Castro-Álvarez FF, William M, Bergvinson DJ, García-Lara S (2015) Genetic mapping of QTL for maize weevil resistance in a RIL population of tropical maize. Theor Appl Genet 128(3):411–419

    Article  PubMed  Google Scholar 

  • Chen J, Ding J, Li H, Li Z, Sun X, Li J, Wang R, Dai X, Dong H, Song W, Chen W (2012) Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed 30:1649–1656

    Article  CAS  Google Scholar 

  • Chen G, Wang X, Long S, Jaqueth J, Li B, Yan J, Ding J (2016a) Mapping of QTL conferring resistance to northern corn leaf blight using high-density SNPs in maize. Mol Breed 36:4. https://doi.org/10.1007/s11032-015-0421-3

    Article  CAS  Google Scholar 

  • Chen J, Shrestha R, Ding J, Zheng H, Mu C, Wu J, Mahuku G (2016b) Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. G3: Genes, Genomes, Genetics 6(12):3803–3815

    Article  CAS  PubMed  Google Scholar 

  • Christensen SA, Nemchenko A, Park YS, Borrego E, Huang PC, Schmelz EA, Kunze S, Feussner I, Yalpani N, Meeley R, Kolomiets MV (2014) The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Mol Plant-Microbe Interact 27(11):1263–1276

    Article  PubMed  Google Scholar 

  • Christensen SA, Huffaker A, Kaplan F, Sims J, Ziemann S, Doehlemann G, Ji L, Schmitz RJ, Kolomiets MV, Alborn HT, Mori N, Jander G, Ni X, Sartor RC, Byers S, Abdo Z, Schmelz EA (2015) Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proc Natl Acad Sci U S A 112(36):11407–11412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coan MMD, Senhorinho HJC, Pinto RJB, Scapim CA, Tessmann DJ, Williams WP, Warburton ML (2018) Genome-wide association study of resistance to ear rot by Fusarium verticillioides in a tropical field maize and popcorn core collection. Crop Sci 58:564–578

    Article  CAS  Google Scholar 

  • Collard B, Jahufer Z, Brouwer JB, Pang E (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize RP1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong G, Pamplona AKA, Von Pinho RG, Balestre M (2018) Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. Genomics 110(5):291–303

    Article  PubMed  Google Scholar 

  • De Souza IRP, Schuelter AR, Guimarães CT, Schuster I, De Oliveira E, Redinbaugh M (2008) Mapping QTL contributing to SCMV resistance in tropical maize. Hereditas 145(4):167–173

    Article  Google Scholar 

  • Dhakal R, Windham GL, Williams WP, Subudhi PK (2016) Quantitative trait loci (QTL) for reducing aflatoxin accumulation in corn. Mol Breed 36(12):1–11

    Article  CAS  Google Scholar 

  • Di Renzo MA, Bonamico NC, Díaz DG, Ibañez MA, Faricelli ME, Balzarini MG, Salerno JC (2004) Microsatellite markers linked to QTL for resistance to Mal de Río Cuarto disease in Zea mays L. J Agric Sci 142(3):289–295

    Article  Google Scholar 

  • Ding JQ, Wang XM, Chander S, Yan JB, Li JS (2008) QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed 22(3):395–403

    Article  Google Scholar 

  • Duble CM, Melchinger AE, Kuntze L, Stork A, Lubberstedt T (2000) Molecular mapping and gene action of Scm1 and Scm2, two major QTL contributing to SCMV resistance in maize. Plant Breed 119(4):299–303

    Article  Google Scholar 

  • Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Frey TJ, Weldekidan T, Colbert T, Wolters PJCC, Hawk JA (2011) Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) GW Wils. Using near-isogenic maize hybrids. Crop Sci 51:1551–1563

    Article  Google Scholar 

  • Galiano-Carneiro AL, Kessel B, Presterl T, Miedaner T (2021a) Intercontinental trials reveal stable QTL for Northern corn leaf blight resistance in Europe and in Brazil. Theor Appl Genet 134(1):63–79

    Article  CAS  PubMed  Google Scholar 

  • Galiano-Carneiro AL, Kessel B, Presterl T, Gaikpa DS, Kistner MB, Miedaner T (2021b) Multi-parent QTL mapping reveals stable QTL conferring resistance to Gibberella ear rot in maize. Euphytica 217(1):1–13

    Article  Google Scholar 

  • Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV, Chandrashekara K (2018) The occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr Sci 115(4):25

    Article  Google Scholar 

  • Gao X, Shim WB, Gobel C, Kunze S, Feussner I, Meeley R, Balint-Kurti P, Kolomiets M (2007) Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol Plant-Microbe Interact 20(8):922–933

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Brodhagen M, Isakeit T, Brown SH, Göbel C, Betran J, Feussner I, Keller NP, Kolomiets MV (2009) Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant-Microbe Interact 22(2):222–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Lara S, Khairallah MM, Vargas M, Bergvinson DJ (2009) Mapping of QTL associated with maize weevil resistance in tropical maize. Crop Sci 49(1):139–149

    Article  CAS  Google Scholar 

  • Garcia-Lara S, Burt AJ, Arnason JT, Bergvinson DJ (2010) QTL mapping of tropical maize grain components associated with maize weevil resistance. Crop Sci 50(3):815. https://doi.org/10.2135/cropsci2009.07.0415

    Article  CAS  Google Scholar 

  • Gimenez E, Salinas M, Manzano-Agugliaro F (2018) Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 10(2):391

    Article  Google Scholar 

  • Giomi GM, Kreff ED, Iglesias J, Fauguel CM, Fernández M, Oviedo MS, Presello DA (2016) Quantitative trait loci for Fusarium and Gibberella ear rot resistance in Argentinian maize germplasm. Euphytica 211(3):287–294

    Article  CAS  Google Scholar 

  • Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TC, Erb M (2011) Induction and detoxification of maize 1, 4-benzoxazin-3-ones by insect herbivores. Plant J 68(5):901–911

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Yang L, Tai F, Hu X, Wang W (2014) “Omics” of maize stress response for sustainable food production: opportunities and challenges. Omics: J Integr Biol 18(12):714–732

    Article  CAS  Google Scholar 

  • Groh S, González-de-León D, Khairallah MM, Hoisington DA (1998) QTL mapping in tropical maize: III. Genomic regions for resistance to Diatraea spp. and associated traits in two RIL populations. Crop Sci 38(4):1062–1072

    Article  Google Scholar 

  • Handrick V, Robert CA, Ahern KR, Zhou S, Machado RA, Maag D, Glauser G, Fernandez-Penny FE, Chandran JN, Rodgers-Melnik E, Schneider B, Buckler ES, Boland W, Gershenzon J, Jander G, Erb M, Köllner TG (2016) Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell 28(7):1682–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Yang L, Leng Y, Zhang B, Yang J, Li L, Chen Y, Kang J, Tang H, Deng L, Wu Y (2018) QTL mapping for resistance of maize to grey leaf spot. J Phytopathol 166(3):167–176

    Article  CAS  Google Scholar 

  • Hegde S, Kumar M, Mahantesh G, Meenakshi GN (2018) Mapping QTLs for resistance to Northern Leaf Blight in Tropical Maize (Zea mays L.). Int J Curr Microbiol App Sci 7(6):1940–1946

    Article  Google Scholar 

  • Hossain F, Boddupalli PM, Sharma RK, Kumar P, Bahadur Singh B (2007) Evaluation of quality protein maize genotypes for resistance to stored grain weevil Sitophilus oryzae (Coleoptera: Curculionidae). Int J Trop Insect Sci 27:114–121

    Article  Google Scholar 

  • Huang X, Han B (2013) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. https://doi.org/10.1146/annurev-arplant-050213-035715

  • Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PEA, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156(4):2082–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulbert SH (1997) Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu Rev Phytopathol 35:293–310

    Article  CAS  PubMed  Google Scholar 

  • Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, Fitze MN, Breen J, Presterl T, Ouzunova M, Keller B (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci USA 112(28):8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakhar DS, Singh R, Singh SK (2021) Assessment of genetics for turcicum leaf blight resistance in maize (Zea mays L.). Bangladesh J Bot 50(1):195–198

    Article  Google Scholar 

  • Jamann TM, Luo X, Morales L, Kolkman JM, Chung CL, Nelson RJ (2016) A remorin gene is implicated in quantitative disease resistance in maize. Theor Appl Genet 129(3):591–602

    Article  CAS  PubMed  Google Scholar 

  • Jampatong C, McMullen MD, Barry BD, Darrah LL, Byrne PF, Kross H (2002) Quantitative trait loci for first-and second-generation European corn borer resistance derived from the maize inbred Mo47. Crop Sci 42(2):584–593

    CAS  Google Scholar 

  • Jensen SG, Lane LC, Seifers DL (1996) A new disease of maize and wheat in the High Plains. Plant Dis 80:1387–1390

    Article  Google Scholar 

  • Jiang JF, Han Y, Xing LJ, Xu YY, Xu ZH, Chong K (2006) Cloning and expression of a novel cDNA encoding a mannose-specific jacalin-related lectin from Oryza sativa. Toxicon 47(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Galindo JC, Ordas B, Butrón A, Samayoa LF, Malvar RA (2017) QTL mapping for yield and resistance against mediterranean corn borer in maize. Front Plant Sci 8:698

    Article  PubMed  PubMed Central  Google Scholar 

  • Jindal J (2013) Incidence of insect pests and management of shoot fly, Atherigona spp. in spring sown maize. Doctoral dissertation, PAU Ludhiana

    Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase-activity encoded by the Hm1 disease resistance gene in maize. Science 258:985–987

    Article  CAS  PubMed  Google Scholar 

  • Ju M, Zhou Z, Mu C, Zhang X, Gao J, Liang Y, Chen J, Wu Y, Li X, Wang S, Wen J (2017) Dissecting the genetic architecture of fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Sci Rep 7(1):1–11

    Article  Google Scholar 

  • Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J (1994) Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theor Appl Genet 89(4):413–418

    Article  CAS  PubMed  Google Scholar 

  • Kannan M, Ismail I, Bunawan H (2018) Maize dwarf mosaic virus: from genome to disease management. Viruses 10(9):492

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur M, Vikal Y, Kaur H, Pal L, Kaur K, Chawla JS (2019) Mapping quantitative trait loci associated with southern leaf blight resistance in maize (Zea mays L.). J Phytopathol 167(10):591–600

    Article  CAS  Google Scholar 

  • Keno T, Azmach G, Gissa DW, Regasa MW, Tadesse B, Wolde L, Deressa T, Abebe B, Chibsa T, Mahabaleswara S (2018) Major biotic maize production stresses in Ethiopia and their management through host resistance. Afr J Agric Res 13(21):1042–1052

    Article  CAS  Google Scholar 

  • Khairallah MM, Bohn M, Jiang C, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE, González-De-León D, Hoisington DA (1998) Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed 117(4):309–318

    Article  Google Scholar 

  • Kibe M, Nair SK, Das B, Bright JM, Makumbi D, Kinyua J, Suresh LM, Beyene Y, Olsen MS, Prasanna BM, Gowda M (2020) Genetic dissection of resistance to gray leaf spot by combining genome-wide association, linkage mapping, and genomic prediction in tropical maize germplasm. Front Plant Sci 11:1602

    Article  Google Scholar 

  • Krakowsky MD, Brinkman MJ, Woodman-Clikeman WL, Lee M (2002) Genetic components of resistance to stalk tunneling by the European corn borer in maize. Crop Sci 42(4):1309–1315

    Article  Google Scholar 

  • Kump KL, Holland JB, Jung MT, Wolters P, Balint-Kurti PJ (2010) Joint analysis of near-isogenic and recombinant inbred line populations yields precise positional estimates for quantitative trait loci. Plant Genome 3(3)

    Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    Article  CAS  PubMed  Google Scholar 

  • Leng P, Ji Q, Asp T, Frei UK, Ingvardsen CR, Xing Y, Studer B, Redinbaugh M, Jones M, Gajjar P, Liu S, Li F, Pan G, Xu M, Lubberstedt T (2017) Auxin binding protein 1 reinforces resistance to sugarcane mosaic virus in maize. Mol Plant 10(10):1357–1360

    Article  CAS  PubMed  Google Scholar 

  • Li ZM, Ding JQ, Wang RX, Chen JF, Sun XD, Chen W, Song WB, Dong HF, Dai XD, Xia ZL, Wu JY (2011) A new QTL for resistance to fusarium ear rot in maize. J Appl Genet 52(4):403–406

    Article  PubMed  Google Scholar 

  • Li YX, Chen L, Li C, Bradbury PJ, Shi YS, Song Y, Zhang D, Zhang Z, Buckler ES, Li Y, Wang T (2018) Increased experimental conditions and marker densities identified more genetic loci associated with southern and northern leaf blight resistance in maize. Sci Rep 8(1):1–12

    Google Scholar 

  • Li N, Lin B, Wang H, Li X, Yang F, Ding X, Yan J, Chu Z (2019) Natural variation in Zm FBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 51(10):1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Hua J, Liu C, Zhang D, Hao Z, Yong H, Xie C, Li M, Zhang S, Weng J, Li X (2016a) Fine mapping of a quantitative trait locus conferring resistance to maize rough dwarf disease. Theor Appl Genet 129(12):2333–2342

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhang YD, Li HY, Bi YQ, Yu LJ, Fan XM, Tan J, Jeffers DP, Kang MS (2016b) QTL mapping for gray leaf spot resistance in a tropical maize population. Plant Dis 100(2):304–312

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Deng S, Liu B, Tao Y, Ai H, Liu J, Zhang Y, Zhao Y, Xu M (2020) A helitron-induced RabGDIα variant causes quantitative recessive resistance to maize rough dwarf disease. Nat Commun 11(1):1–14

    CAS  Google Scholar 

  • Liu Y, Hu G, Zhang A, Loladze A, Hu Y, Wang H, Qu J, Zhang X, Olsen M, San Vicente F, Crossa J (2021) Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J 9(2):325–341

    Article  Google Scholar 

  • Lopez-Zuniga LO, Wolters P, Davis S, Weldekidan T, Kolkman JM, Nelson R, Hooda KS, Rucker E, Thomason W, Wisser R, Balint-Kurti P (2019) Using maize chromosome segment substitution line populations for the identification of loci associated with multiple disease resistance. G3: Genes, Genomes, Genetics 9(1):189–201

    Article  CAS  PubMed  Google Scholar 

  • Lü X, Li X, Xie C, Hao Z, Ji H, Shi L, Zhang S (2008) Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics. Front Agric China 2(4):365–371

    Article  Google Scholar 

  • Luan J, Wang F, Li Y, Zhang B, Zhang J (2012) Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize (Zea mays L.). Theor Appl Genet 125(4):781–791

    Article  CAS  PubMed  Google Scholar 

  • Lyimo HJ, Pratt RC, Mnyuku RS (2011) Heritability and gene effect estimates for components of partial resistance to grey leaf spot of maize by generation mean analysis. Plant Breed 130(6):633–639

    Article  Google Scholar 

  • Mahuku G, Lockhart BE, Wanjala B, Jones MW, Kimunye JN, Stewart LR, Cassone BJ, Sevgan S, Nyasani JO, Kusia E, Kumar PL (2015) Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 105(7):956–965

    Article  PubMed  Google Scholar 

  • Marti G, Erb M, Boccard J, Glauser G, Doyen GR, Villard N, Robert CAM, Turlings TC, Rudaz S, Wolfender JL (2013) Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ 36(3):621–639

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Shepherd DN (2009) The epidemiology, economic impact and control of maize streak disease. Food Secur 1(3):305–315

    Article  Google Scholar 

  • Martin DP, Willment JA, Billharz R, Velders R, Odhiambo B, Njuguna J, James D, Rybicki EP (2001) Sequence diversity and virulence in Zea mays of Maize streak virus isolates. Virology 288(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Martins LB, Rucker E, Thomason W, Wisser RJ, Holland JB, Balint-Kurti P (2019) Validation and characterization of maize multiple disease resistance QTL. G3: Genes, Genomes, Genetics 9(9):2905–2912

    Article  CAS  PubMed  Google Scholar 

  • Maschietto V, Colombi C, Pirona R, Pea G, Strozzi F, Marocco A, Rossini L, Lanubile A (2017) QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol 17(1):1–21

    Article  Google Scholar 

  • Mikel MA, D’arcy CJ, Rhodes AM, Ford RE (1981) Yield loss in sweet corn correlated with time of inoculation with maize dwarf mosaic virus. Plant Dis 65(11):902–904

    Article  Google Scholar 

  • Mitchell NJ, Bowers E, Hurburgh C, Wu F (2016) Potential economic losses to the US corn industry from aflatoxin contamination. Food Addit Contam Part A 33(3):540–550

    Article  CAS  Google Scholar 

  • Moeller DA, Tiffin P (2005) Genetic diversity and the evolutionary history of plant immunity genes in two species of Zea. Mol Biol Evol 22(12):2480–2490

    Article  CAS  PubMed  Google Scholar 

  • Morales L, Zila CT, Moreta Mejía DE, Montoya Arbelaez M, Balint-Kurti PJ, Holland JB, Nelson RJ (2019) Diverse components of resistance to Fusarium verticillioides infection and fumonisin contamination in four maize recombinant inbred families. Toxins 11(2):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S (1998) Induced resistance responses in maize. Mol Plant-Microbe Interact 11(7):643–658

    Article  CAS  PubMed  Google Scholar 

  • Mottaleb KA, Loladze A, Sonder K, Kruseman G, San Vicente F (2019) Threats of tar spot complex disease of maize in the United States of America and its global consequences. Mitig Adapt Strateg Glob Chang 24(2):281–300

    Article  Google Scholar 

  • Muimba-Kankolongo A (2018) Food crop production by smallholder farmers in Southern Africa: challenges and opportunities for improvement. Academic

    Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N, Saha S, Agrawal PK, Gupta HS (2016) Genetic analyses of kernel carotenoids in novel maize genotypes possessing rare allele of β-carotene hydroxylase gene. Cereal Res Commun 44:669–680

    Article  CAS  Google Scholar 

  • Nwosu LC (2018) Maize and the maize weevil: advances and innovations in postharvest control of the pest. Food Qual Saf 2(3):145–152

    Article  CAS  Google Scholar 

  • Oluwafemi S, Bruce TJ, Pickett JA, Ton J, Birkett MA (2011) Behavioral responses of the leafhopper, Cicadulina storeyi China, a major vector of maize streak virus, to volatile cues from intact and leafhopper-damaged maize. J Chem Ecol 37(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Ong’amo G, Khadioli N, Le Ru B, Mujica N, Carhuapoma P (2016) Spotted stemborer, Chilo partellus (Swinhoe 1885). In: Kroschel J, Mujica N, Carhuapoma P, Sporleder M (eds) Pest distribution and risk atlas for Africa. Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. International Potato Center (CIP), Lima. ISBN 978-92-9060-476-1

    Google Scholar 

  • Onukogu FA, Guthrie WD, Russell WA, Reed GL, Robbins JC (1978) Location of genes that condition resistance in maize to sheath-collar feeding by second-generation European corn borers. J Econ Entomol 71(1):1–4

    Article  Google Scholar 

  • Ordas B, Malvar RA, Santiago R, Sandoya G, Romay MC, Butron A (2009) Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 × Mo17 (IBM) population of maize. Theor Appl Genet 119(8):1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Ordas B, Malvar RA, Santiago R, Butron A (2010) QTL mapping for Mediterranean corn borer resistance in European flint germplasm using recombinant inbred lines. BMC Genomics 11(1):1–10

    Article  Google Scholar 

  • Papst C, Bohn M, Utz HF, Melchinger AE, Klein D, Eder J (2004) QTL mapping for European corn borer resistance (Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize (Zea mays L.) germplasm. Theor Appl Genet 108(8):1545–1554

    Article  CAS  PubMed  Google Scholar 

  • Perera MF, Filippone MP, Ramallo CJ, Cuenya MI, Garcia ML, Ploper LD, Castagnaro AP (2009) Genetic diversity among viruses associated with sugarcane mosaic disease in Tucumán, Argentina. Phytopathology 99(1):38–49

    Article  CAS  PubMed  Google Scholar 

  • Perez-Brito D, Jeffers D, Gonzales-de-Leon D, Khairallah MM, Cortes-Cruz M, Velazquez-Cardelas G, Azpíroz S, Srinivasan G (2001) QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrociencia 35:181–196

    Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106(13):5019–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci 108(17):6893–6898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM, Bruce A, Beyene Y, Makumbi D, Gowda M, Asim M, Martinelli S, Head GP, Parimi S (2022) Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia. Theor Appl Genet 135:3897–3916

    Google Scholar 

  • Pu Z (2013) Dynamic analysis on the disease progression of maize leaf blight between Xianyu335 and improved Xianyu335 in Western region of Heilongjiang Province. J Maize Sci 21(4):119–123

    Google Scholar 

  • Qi J, Sun G, Wang L, Zhao C, Hettenhausen C, Schuman MC, Baldwin IT, Li J, Song J, Liu Z, Xu G (2016) Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high-dimensional biological data. Plant Cell Environ 39(8):1749–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna W, Emberton J, Ogden M, SanMiguel P, Bennetzen JL (2002) Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell 14:3213–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganatha HM, Lohithaswa HC, Anand SP (2017) Understanding the genetic architecture of resistance to northern corn leaf blight and southern corn rust in maize (Zea mays L.). Indian J Genet Plant Breed 77(3):357–363

    Article  Google Scholar 

  • Ranganatha HM, Lohithaswa HC, Pandravada A (2021) Mapping and validation of major quantitative trait loci for resistance to northern corn leaf blight along with the determination of the relationship between resistances to multiple foliar pathogens of maize (Zea mays L.). Front Genet 11:1764

    Article  Google Scholar 

  • Rashid Z, Sofi M, Harlapur SI, Kachapur RM, Dar ZA, Singh PK, Zaidi PH, Vivek BS, Nair SK (2020) Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Sci Rep 10(1):1–16

    Article  CAS  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737

    Article  CAS  PubMed  Google Scholar 

  • Redinbaugh MG, Stewart LR (2018) Maize lethal necrosis: an emerging, synergistic viral disease. Annu Rev Virol 5(1):301–322

    Article  CAS  PubMed  Google Scholar 

  • Robertson-Hoyt LA, Jines MP, Balint-Kurti PJ, Kleinschmidt CE, White DG, Payne GA, Maragos CM, Molnár TL, Holland JB (2006) QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci 46(4):1734–1743

    Article  CAS  Google Scholar 

  • Samayoa LF, Butron A, Malvar RA (2014) QTL mapping for maize resistance and yield under infestation with Sesamia nonagrioides. Mol Breed 34(3):1331–1344

    Article  Google Scholar 

  • Samayoa LF, Malvar RA, McMullen MD, Butron Gomez AM (2015a) Identification of QTL for resistance to Mediterranean corn borer in a maize tropical line to improve temperate germplasm. BMC Plant Biol 15:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Samayoa LF, Malvar RA, Olukolu BA, Holland JB, Butron A (2015b) Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC Plant Biol 15(1):1–15

    Article  Google Scholar 

  • Samayoa LF, Cao A, Santiago R, Malvar RA, Butrón A (2019) Genome-wide association analysis for fumonisin content in maize kernels. BMC Plant Biol 19(1):1–11

    Article  Google Scholar 

  • Santiago R, Reid LM, Arnason JT, Zhu X, Martinez N, Malvar RA (2007) Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). J Agric Food Chem 55:5186–5193

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A et al (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci USA 108:5455–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schon CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL (1993) Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity 70(6):648–659

    Article  CAS  Google Scholar 

  • Shepherd DN, Martin DP, Van der Walt E, Dent K, Varsani A, Rybicki EP (2010) Maize streak virus: an old and complex ‘emerging’ pathogen. Mol Plant Pathol 11(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Shi LY, Hao ZF, Weng JF, Xie CX, Liu CL, Zhang DG, Li MS, Bai L, Li XH, Zhang SH (2012) Identification of a major quantitative trait locus for resistance to maize rough dwarf virus in a Chinese maize inbred line X178 using a linkage map based on 514 gene-derived single nucleotide polymorphisms. Mol Breed 30(2):615–625

    Article  CAS  Google Scholar 

  • Shiferaw B, Prasanna B, Hellin J, Banziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327

    Article  Google Scholar 

  • Signoret PA (2008) Cereal viruses: maize/corn. In: Encyclopedia of virology, pp 475–482. https://doi.org/10.1016/b978-012374410-4.00700-7

    Chapter  Google Scholar 

  • Singh R, Srivastava RP (2015) New quantitative trait loci (QTLs) for turcicum leaf blight in maize. J Biotech Crop Sci 5:35–43

    Google Scholar 

  • Smith CJ (1996) Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 132:1–45

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Williams WP, Windham GL, Xu W, Warburton ML, Bhattramakki D (2019) Identification of quantitative trait loci contributing resistance to aflatoxin accumulation in maize inbred Mp715. Mol Breed 39(6):1–14

    Article  CAS  Google Scholar 

  • Song FJ, Xiao MG, Duan CX, Li HJ, Zhu ZD, Liu BT, Sun SL, Wu XF, Wang XM (2015) Two genes conferring resistance to pythium stalk rot in maize inbred line Qi319. Mol Gen Genomics 290(4):1543–1549

    Article  CAS  Google Scholar 

  • Spangler LM (2008) Impact of lignin and caffeoyl coenzyme a O-methyltransferase 1 on Aspergillus flavus growth in maize cobs. MSc thesis, The Pennsylvania State University, State College, PA, USA

    Google Scholar 

  • Steffenson BJ (1992) Analysis of durable resistance to stem rust in barley. Euphytica 63:153–167

    Article  Google Scholar 

  • Sun H, Zhai L, Teng F, Li Z, Zhang Z (2021) qRgls1.06, a major QTL conferring resistance to gray leaf spot disease in maize. Crop J 9(2):342–350

    Article  Google Scholar 

  • Tamiru A, Bruce TJ, Woodcock CM, Caulfield JC, Midega CA, Ogol CK, Mayon P, Birkett MA, Pickett JA, Khan ZR (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14(11):1075–1083

    Article  PubMed  Google Scholar 

  • Tao Y, Liu Q, Wang H, Zhang Y, Huang X, Wang B, Lai J, Ye J, Liu B, Xu M (2013a) Identification and fine-mapping of a QTL, qMrdd1, that confers recessive resistance to maize rough dwarf disease. BMC Plant Biol 13(1):1–13

    Article  Google Scholar 

  • Tao Y, Jiang L, Liu Q, Zhang Y, Zhang R, Ingvardsen CR, Lübberstedt T, Xu M (2013b) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13(1):1–13

    Article  Google Scholar 

  • Tembo L, Asea G, Gibson PT, Okori P (2014) Quantitative trait loci for resistance to Stenocarpella maydis and Fusarium graminearum cob rots in tropical maize. J Crop Improv 28(2):214–228

    Google Scholar 

  • Terefe H, Gudero G (2019) Distribution and association of factors influencing emerging maize lethal necrosis disease epidemics in Southern Ethiopia. Cogent Food Agric 5(1):1683950

    Article  Google Scholar 

  • Tian Z, Ai T, Deng C, You S, Shi Q, Ma Y, Li Z, Ding J (2018) QTL mapping of resistance to northern corn leaf blight in maize inbred line P178 and effect analysis. J Henan Agric Sci 47(2):73–97

    Google Scholar 

  • Tippannavar PS, Talekar SC, Mallapur CP, Kachapur RM, Salakinkop SR, Harlapur SI (2019) An outbreak of fall armyworm in Indian subcontinent: a new invasive pest on maize. Maydica 64(1):10

    Google Scholar 

  • Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970-1971. Annu Rev Phytopathol 10:37–50

    Article  Google Scholar 

  • United States Department of Agriculture (2020) Retrieved from USDA: https://apps.fas.usda.gov/psdonline/circulars/production.pdf

  • Van Inghelandt D, Melchinger AE, Martinant JP, Stich B (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12(1):1–15

    Google Scholar 

  • Velasco P, Revilla P, Monetti L, Butron A, Ordas A, Malvar RA (2007) Corn borers (Lepidoptera; Noctuidae; Crambidae) in northwestern Spain: population dynamics and distribution. Maydica 52:195–203

    Google Scholar 

  • Veyrat N, Robert CAM, Turlings TCJ, Erb M (2016) Herbivore intoxication as a potential primary function of an inducible volatile plant signal. J Ecol 104(2):591–600

    Article  CAS  Google Scholar 

  • Waiss AC Jr, Chan BG, Elliger CA, Wiseman BR, McMillian WW, Widstrom NW, Zuber MS, Keaster AJ (1979) Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. J Econ Entomol 72(2):256–258

    Article  CAS  Google Scholar 

  • Wang ZH, Fang SG, Xu JL, Sun LY, Li DW, Yu JL (2003) Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes 27(2):163–168

    Article  PubMed  Google Scholar 

  • Wang C, Yang Q, Wang W, Li Y, Guo Y, Zhang D, Ma X, Song W, Zhao J, Xu M (2017) A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol 215(4):1503–1515

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xu Z, Yang J, Lu X, Zhou Z, Zhang C, Zheng L, Tian R, Hao Z, Yong H, Li M, Zhang D, Li X, Weng J (2018) qNCLB7. 02, a novel QTL for resistance to Northern corn leaf blight in maize. Mol Breed 38(5):1–12

    Article  Google Scholar 

  • Wang X, Yang Q, Dai Z, Wang Y, Zhang Y, Li B, Zhao W, Hao J (2019) Identification of QTLs for resistance to maize rough dwarf disease using two connected RIL populations in maize. PLoS One 14(12):e0226700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welz HG, Geiger HH (2000) Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breed 119:1–14

    Article  CAS  Google Scholar 

  • Wen J, Shen Y, Xing Y, Wang Z, Han S, Li S, Yang C, Hao D, Zhang Y (2020) QTL mapping of resistance to Gibberella ear rot in maize. Mol Breed 40(10):1–11

    Article  Google Scholar 

  • Wen J, Shen Y, Xing Y, Wang Z, Han S, Li S, Yang C, Hao D, Zhang Y (2021) QTL mapping of Fusarium ear rot resistance in maize. Plant Dis 105(3):558–565

    Article  CAS  PubMed  Google Scholar 

  • Willcox MC, Khairallah MM, Bergvinson D, Crossa J, Deutsch JA, Edmeades GO, Gonzalez-de-Leon D, Jiang C, Jewell DC, Mihm JA, Williams WP, Hoisington D (2002) Selection for resistance to southwestern corn borer using marker-assisted and conventional backcrossing. Crop Sci 42(5):1516

    Article  Google Scholar 

  • Woloshuk C, Wise K (2010) Gibberella ear rot. Purdue University Extension. Retrieved from: https://www.extension.purdue.edu/extmedia/BP/BP-77-W.pdf

  • Woloshuk C, Wise K (2011) Aspergillus ear rot. Purdue University Extension. Retrieved from: https://www.extension.purdue.edu/extmedia/bp/bp-83-w.pdf

  • Womack ED, Warburton ML, Williams WP (2018) Mapping of quantitative trait loci for resistance to fall armyworm and southwestern corn borer leaf-feeding damage in maize. Crop Sci 58(2):529–539

    Article  CAS  Google Scholar 

  • Womack ED, Williams WP, Windham GL, Xu W (2020) Mapping quantitative trait loci associated with resistance to aflatoxin accumulation in maize inbred MP719. Front Microbiol 11:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu F, Shu J, Jin W (2014) Identification and validation of miRNAs associated with the resistance of maize (Zea mays L.) to Exserohilum turcicum. PLoS One 9:e87251

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X, Melchinger AE, Kuntze L, Lubberstedt T (1999) Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology 89(8):660–667

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Gao W, Qu J, Dai L, Gao Y, Lu S, Zhang M, Wang P, Wang T (2020) Genetic mapping of northern corn leaf blight-resistant quantitative trait loci in maize. Medicine 99(31):e21326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Ingvardsen C, Salomon R, Lubberstedt T (2006) Analysis of sugarcane mosaic virus resistance in maize in an isogenic dihybrid crossing scheme and implications for breeding potyvirus-resistant maize hybrids. Genome 49(10):1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Xu ML, Melchinger AE, Xia XC, Lubberstedt T (1999) High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet MGG 261(3):574–581

    Article  CAS  PubMed  Google Scholar 

  • Xu DL, Park JW, Mirkov TE, Zhou GH (2008) Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol 153(6):1031–1039

    Article  PubMed  Google Scholar 

  • Xu Z, Hua J, Wang F, Cheng Z, Meng Q, Chen Y, Han X, Tie S, Liu C, Li X, Wang Z, Weng J (2020) Marker-assisted selection of qMrdd8 to improve maize resistance to rough dwarf disease. Breed Sci 70(2):183–192

    Google Scholar 

  • Yang Q, Yin G, Guo Y, Zhang D, Chen S, Xu M (2010) A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet 121:673–687

    Article  PubMed  Google Scholar 

  • Yang Q, He Y, Kabahuma M, Chaya T, Kelly A, Borrego E, Bian Y, El Kasmi F, Yang L, Teixeira P, Kolkman J, Nelson R, Kolomiets M, Dang JL, Wisser R, Caplan J, Li X, Lauter N, Balint-Kurti P, Balint-Kurti P (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49(9):1364–1372

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Zhong T, Zhang D, Ma C, Wang L, Yao L, Zhang Q, Zhu M, Xu M (2019) The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant 12(3):360–373

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Dussle CM, Melchinger AE, Utz HF, Lubberstedt T (2003) Clustering of QTL conferring SCMV resistance in maize. Maydica 48(1):55–62

    Google Scholar 

  • Yuan G, Chen B, Peng H, Zheng Q, Li Y, Xiang K, Liu L, Zou C, Lin H, Ding H, Pan G, Zhang Z (2020) QTL mapping for resistance to ear rot caused by Fusarium graminearum using an IBM Syn10 DH population in maize. Mol Breed 40(9):1–12

    Article  Google Scholar 

  • Zanakis GN, Mariolis NA, Rodiatos AJ, Kesoglou AP, Paraskevakos EP, Dimou KN, Theodosiadis CA, Zampogianis CT (2009) Chemical control of maize pests Ostrinia nubilalis (Lepidoptera: Crambidae) and Sesamia nonagrioides (Lepidoptera: Noctuidae) in Greece. In: Proceedings of 13th Panhellenic entomological congress. Copycity, Thessaloniki, pp 302–303

    Google Scholar 

  • Zhang Y, Xu L, Fan X, Tan J, Chen W, Xu M (2012) QTL mapping of resistance to gray leaf spot in maize. Theor Appl Genet 125(8):1797–1808

    Article  PubMed  Google Scholar 

  • Zhang D, Liu Y, Guo Y, Yang Q, Ye J, Chen S, Xu M (2012a) Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet 124(3):585–596

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Deng S, Zhao Y, Xu W, Liu Q, Zhang Y, Ren C, Cheng Z, Xu M, Liu B (2021) qMrdd2, a novel quantitative resistance locus for maize rough dwarf disease. BMC Plant Biol 21(1):1–11

    Article  Google Scholar 

  • Zhao Y, Lu X, Liu C, Guan H, Zhang M, Li Z, Cai H, Lai J (2012) Identification and fine mapping of rhm1 locus for resistance to southern corn leaf blight in maize. J Integr Plant Biol 54(5):321–329

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Tong L, Xu M, Zhong T (2021) Genetic dissection of maize disease resistance and its applications in molecular breeding. Mol Breed 41(5):1–22

    Article  CAS  Google Scholar 

  • Zila CT, Fernando Samayoa L, Santiago R, Butron A, Holland JB (2013) A genome-wide association study reveals genes associated with fusarium ear rot resistance in a maize core diversity panel. G3: Genes Genomes Genetics 3(11):2095–2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Zila CT, Ogut F, Romay MC, Gardner CA, Buckler ES, Holland JB (2014) Genome-wide association study of Fusarium ear rot disease in the USA maize inbred line collection. BMC Plant Biol 14(1):1–15

    Article  Google Scholar 

  • Zunjare RU (2012) Genetic analyses of resistance to stored grain weevil (Sitophilus oryzae) in maize. MSc Thesis submitted to Post graduate School, Indian Agricultural Research Institute, New Delhi India, p 123

    Google Scholar 

  • Zunjare R, Hossain F, Thirunavukkarasu N, Muthusamy V, Jha SK, Kumar P, Gupta HS (2014) Evaluation of specialty corn inbreds for responses to stored grain weevil (Sitophilus oryzae L.) infestation. Indian J Genet Plant Breed 74:564–567

    Article  Google Scholar 

  • Zunjare R, Hossain F, Muthusamy V, Jha SK, Kumar P, Sekhar JC, Guleria SK, Singh NK, Thirunavukkarasu N, Gupta HS (2015a) Genetics of resistance to stored grain weevil (Sitophilus oryzae L.) in maize. Cogent Food Agric 1:1075934. https://doi.org/10.1080/23311932.2015.1075934

    Article  CAS  Google Scholar 

  • Zunjare RU, Hossain F, Muthusamy V, Vishwakarma A, Pandey N, Kumar P, Sekhar JC, Jha SK, Thirunavukkarasu N, Gupta HS (2015b) Analyses of genetic diversity among exotic-and indigenous-maize inbreds differing for responses to stored grain weevil (Sitophilus oryzae L) infestation. Maydica 60:1–7

    Google Scholar 

  • Zunjare R, Hossain F, Muthusamy V, Choudhary M, Kumar P, Sekhar JC, Guleria SK, Singh NK, Thirunavukkarasu N, Gupta HS (2015c) Popping quality attributes of popcorn hybrids in relation to weevil (Sitophilus oryzae) infestation. Indian J Genet Plant Breed 75:510–513

    Article  CAS  Google Scholar 

  • Zunjare R, Hossain F, Muthusamy V, Jha SK, Kumar P, Sekhar JC, Thirunavukkarasu N, Gupta HS (2016) Genetic variability among exotic and indigenous maize inbreds for resistance to stored grain weevil (Sitophilus oryzae L.) infestation. Cogent Food Agric 2:1137156. https://doi.org/10.1080/23311932.2015.1137156

    Article  CAS  Google Scholar 

  • Zunjare RU, Hossain F, Muthusamy V, Baveja A, Chauhan HS, Bhat JS, Thirunavukkarasu N, Saha S, Gupta HS (2018) Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and opaque2 genes. Front Plant Sci 9:178

    Google Scholar 

  • Zwonitzer J, Bubeck D, Bhattramakki D, Goodman M, Arellano C, Balint-Kurti PJ (2009) Use of selection with recurrent back-crossing and QTL mapping to identify loci contributing to southern leaf blight resistance in a highly resistant maize line. Theor Appl Genet 118:911–925

    Article  PubMed  Google Scholar 

  • Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB, McMullen MD, Pratt RC, Balint-Kurti PJ (2010) Mapping resistance quantitative trait loci for three foliar diseases in maize recombinant inbred line population-evidence for multiple disease resistance. Phytopathology 100(1):72–79

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zunjare, R.U. et al. (2023). Dissection of QTLs for Biotic Stress Resistance in Maize. In: Wani, S.H., Dar, Z.A., Singh, G.P. (eds) Maize Improvement. Springer, Cham. https://doi.org/10.1007/978-3-031-21640-4_3

Download citation

Publish with us

Policies and ethics