Skip to main content

A Reconfigurable Arbiter PUF Based on VGSOT MTJ

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1687))

Included in the following conference series:

  • 797 Accesses

Abstract

With the serious scaling limitations of complementary metal-oxide-semiconductor technology, emerging spintronic devices have attracted recent attention for next-generation energy-efficient and secure systems. Voltage-Gated Spin-Orbit Torque (VGSOT) based Magnetic Tunnelling Junction (MTJ) device is proved to show lower energy consumptions with stochastic switching, process variations, and chaotic magnetization. Exploiting these intrinsic variations, this paper for the first time presents a reconfigurable arbiter physically unclonable function (PUF). Further, the PUF functionality is validated considering VGSOT MTJ and 45nm CMOS technology. Considering the state of VGSOT devices, the proposed PUF is observed to be fully reconfigurable. Considering the abilities of VGSOT, PUF shows higher uniqueness of 50.2% at a supply voltage of 0.8V. Additionally, PUF achieves high reliability of 95.8% considering supply voltage and temperature variations. Moreover, at a supply voltage of 0.8V, the proposed PUF achieves lower energy consumption of 24fJ/bit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, D., Zeng, L., Zhang, Y., Klein, J.O., Zhao, W.: Reliability enhanced hybrid CMOS/MTJ logic circuit architecture. IEEE Trans. Mag. 53(11), 1–5 (2017)

    Article  Google Scholar 

  2. Bohr, M.T., Young, I.A.: CMOS scaling trends and beyond. IEEE Micro. 37(6), 20–29 (2017)

    Article  Google Scholar 

  3. Zhang, D., et al.: Reliability-enhanced separated pre-charge sensing amplifier for hybrid CMOS/MTJ logic circuits. IEEE Trans. Mag. 53(9), 1–5 (2017)

    Article  Google Scholar 

  4. Chun, K.C., Zhao, H., Harms, J.D., Kim, T.H., Wang, J.P., Kim, C.H.: A scaling roadmap and performance evaluation in in- plane and perpendicular MTJ based STT-MRAMs for high-density cache memory. IEEE J. Solid State Circuits 48(2), 598–610 (2013)

    Article  Google Scholar 

  5. Augustine, C., Mojumder, N., Fong, X., Choday, H., Park, S.P., Roy, K.: STT-MRAMs for future universal memories: Perspective and prospective. In: 28th International Conference on Microelectronics Proceedings, pp. 349–355. IEEE, Nis, Serbia (2012)

    Google Scholar 

  6. Kitagata, D., Sugahara, S.: Design and energy-efficient architectures for nonvolatile static random access memory using magnetic tunnel junctions. Jpn. J. Appl. Phys. 58(SB), SBBB12 (2019)

    Google Scholar 

  7. Ikeda, S., et al.: Perpendicular-anisotropy CoFeB-MgO based magnetic tunnel junctions scaling down to 1X nm. In: IEEE International Electron Devices Meeting, 2014, pp. 33.2.1–33.2.4. IEEE, San Francisco, CA, USA (2014)

    Google Scholar 

  8. Sarkar, M.R., Bappy, M.M.A., Azmir, M.M., Rashid, D.M., Hasan, S.I.: VG-SOT MRAM Design and Performance Analysis. In: IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference, pp. 715–719. IEEE, Vancouver, BC, Canada (2021)

    Google Scholar 

  9. Zhang, K., Zhang, D., Wang, C., Zeng, L., Wang, Y., Zhao, W.: Compact modeling and analysis of voltage-gated spin-orbit torque magnetic tunnel junction. IEEE Access 8, 50792–50800 (2020)

    Article  Google Scholar 

  10. Wang, C., et al.: Magnetic nonvolatile SRAM based on voltage-gated spin-orbit-torque magnetic tunnel junctions. IEEE Trans. Electron Dev. 67(5), 1965–1971 (2020)

    Article  Google Scholar 

  11. Devadas, S., Suh, E., Paral, S., Sowell, R., Ziola, T., Khandelwal, V.: Design and implementation of PUF-based unclonable RFID ICs for anti-counterfeiting and security applications. In: IEEE International Conference on RFID, pp. 58–64. IEEE, Las Vegas, NV, USA (2008)

    Google Scholar 

  12. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication applications. In: Symposium on VLSI Circuits. Digest of Technical Papers, pp. 176–179. IEEE, Honolulu, HI, USA (2004)

    Google Scholar 

  13. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: 44th ACM/IEEE Design Automation Conference, pp. 9–14. IEEE, San Diego, CA, USA (2007)

    Google Scholar 

  14. Wang, Y., Wang, C., Gu, C., Cui, Y., ONeill, M., Liu, W.: Theoretical analysis of delay-based pufs and design strategies for improvement. In: IEEE International Symposium on Circuits and Systems, pp. 1–5. IEEE, Sapporo, Japan (2019)

    Google Scholar 

  15. Garg, A., Kim, T.T.: Design of SRAM PUF with improved uniformity and reliability utilizing device aging effect. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1941–1944. IEEE, Melbourne, VIC, Australia (2014)

    Google Scholar 

  16. Sakib, S., Rahman, M.T., Milenković, A., Ray, B.: Flash memory based physical unclonable function. In: 2019 SoutheastCon, pp. 1–6. IEEE, Huntsville, AL, USA (2019)

    Google Scholar 

  17. Sushma, R., Murty, N. S.: Feedback oriented XORed flip-flop based arbiter PUF. In: International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), pp. 1444–1448. IEEE, Msyuru, India (2018)

    Google Scholar 

  18. Manual of Compact Model of Voltage-Gated SOT, http://www.spinlib.com

  19. Zhao, W., Chappert, C., Javerliac, V., Noziere, J.P.: High speed, high stability and low power sensing amplifier for MTJ/CMOS hybrid logic circuits. IEEE Trans. Mag. 45(10), 3784–3787 (2009)

    Article  Google Scholar 

  20. Japa, A., Mujumdar, M.K., Sahoo, S.K., Vaddi, R.: Tunnel FET-based ultra-lightweight reconfigurable TRNG and PUF design for resource-constrained internet of things. Int. J. Circuit Theory Appl. 49(8), 2299–2311 (2021)

    Article  Google Scholar 

  21. Venkatesh, A., Venkatasubramaniyan, A. B., Xi, X., Sanyal, A.: 0.3 pJ/bit machine learning resistant strong PUF using subthreshold voltage divider array. IEEE Trans. Circuits Syst. II: Express Briefs 67(8), 1394–1398 (2019)

    Google Scholar 

  22. Tanaka, Y., et al.: Physically unclonable functions with voltage-controlled magnetic tunnel junctions. IEEE Trans. Mag. 57(2), 1–6 (2021)

    Article  Google Scholar 

  23. Lim, D., Lee, J. W., Gassend, B., Suh, G. E., Van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. Syst. 13(10), 1200–1205 (2005)

    Google Scholar 

  24. Dodo, S. B., Bishnoi, R., Nair, S. M., Tahoori, M. B.: A Spintronics memory PUF for resilience against cloning counterfeit. IEEE Trans. Very Large Scale Integr. Syst. 27(11), 2511–2522 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Kranti Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, K.K., Japa, A., Gupta, D. (2022). A Reconfigurable Arbiter PUF Based on VGSOT MTJ. In: Shah, A.P., Dasgupta, S., Darji, A., Tudu, J. (eds) VLSI Design and Test. VDAT 2022. Communications in Computer and Information Science, vol 1687. Springer, Cham. https://doi.org/10.1007/978-3-031-21514-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21514-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21513-1

  • Online ISBN: 978-3-031-21514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics