Skip to main content

Nanotechnology on Perspective Computer Science

  • Conference paper
  • First Online:
Software Engineering Application in Systems Design (CoMeSySo 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 596))

Included in the following conference series:

Abstract

Computer science has long been an established science, but changes continue to occur both in terms of technology and application. Of course, the change comes from challenges that come from different technologies and knowledge. The challenge is a phenomenon, nanotechnology, which affects many other scientific fields indirectly. A science remains on its scientific principles, framing data and based on appropriate methods. Although the basic principles of computer science are not affected by changes in nanotechnology, the challenges of changing different disciplines due to nanotechnology need to be expressed from the point of view of computer science, which fall into two categories as is the relationship between computer science and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matula, D.W.: The emergence of computational arithmetic as a component of the computer science curriculum. ACM SIGCSE Bull. 2(3), 41–44 (1970). https://doi.org/10.1145/873641.873650

    Article  Google Scholar 

  2. Bungartz, H.-J., Mehl, M., Zenger, C.: Computer science and numerical fluid mechanics - An essential cooperation. Notes Numer. Fluid Mech. Multi. Des. 100, 437–450 (2009). https://doi.org/10.1007/978-3-540-70805-6_34

    Article  Google Scholar 

  3. Requena, C.G., Gomez, M.E., Sahuquillo, J.: A new methodology for studying realistic processors in computer science degrees. In: Proceedings—IEEE 27th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IPDPSW, pp. 1283–1290 (2013). https://doi.org/10.1109/IPDPSW.2013.13

  4. Mortazavi, M., Nasution, M.K.M., Abdolahzadeh, F., Behroozi, M., Davarpanah, A.: Sustainable learning environment by mobile-assisted language learning methods on the improvement of productive and receptive foreign language skills: a comparative study for asian universities. Sustain. (Switzerland) 13(11) (2021). https://doi.org/10.3390/su13116328

  5. Rajab, K., Hamdi, M., Al Reshan, M. S., Asiri, Y., Shaikh, A., Rajab, A.: Implementation of virtual training: the example of a faculty of computer science during COVID-19 for sustainable development in engineering education. Electron. (Switzerland) 11(5): 2022. https://doi.org/10.3390/electronics11050694

  6. Syah, R., Elveny, M., Nasution, M.K.M., Ponkratov, V.V., Kuznetsova, M.Y., Poltarykhin, A.L., Babanezhad, M.: Numerical investigation of nanofluid flow using CFD and fuzzy-based particle swarm optimization. Sci. Rep. 11. https://doi.org/10.1038/s41598-021-00279-6

  7. Egwu, C.N., Babalola, R., Udoh, T. H., Esio, O.O.: Nanotechnology: applications, challenges, and prospects. Green Energy Technol. 3–15 (2022). https://doi.org/10.1007/978-3-030-95820-6_1

  8. Makarucha, A.J., Todorova, N., Yarovsky, I.: Nanomaterials in biological environment: A review of computer modelling studies. Eur. Biophys. J. 40(2), 103–115 (2011). https://doi.org/10.1007/s00249-010-0651-6

    Article  Google Scholar 

  9. Newell, A., Perlis, A.J., Simon, H.A.: Computer science. Science 157(3795), 1373–1374 (1967). https://doi.org/10.1126/science.157.3795.1373-b

    Article  Google Scholar 

  10. Knuth, D.E.: Fundamental algorithm. In: The Art of Computer Programming, Vol. 1. Addison-Wesley (1973)

    Google Scholar 

  11. Wegner, P.: Programming languages. McGraw-Hill, Information Structures and Machine Organization (1968)

    MATH  Google Scholar 

  12. Djikstra, E.W.: Notes on structured programming. In: Structured Programming, Dahl. Academic Press, Dijkstra and Hoare (1972)

    Google Scholar 

  13. Sabin, R.E., Sabin, E.P.: Collaborative learning in an introductory computer science course. ACM SIGCSE Bull. 26(1), 304–308 (1994). https://doi.org/10.1145/191033.191156

    Article  Google Scholar 

  14. Fouh, E., Akbar, M., Shaffer, C.A.: The role of visualization in computer science education. Comput. Sch. 29(1–2), 95–117 (2012). https://doi.org/10.1080/07380569.2012.651422

    Article  Google Scholar 

  15. Syah R., Davarpanah, A., Elveny, M., Karmaker, A.K., Nasution, M.K.M., Hossain, M.A.: Forecasting daily electricity price by hybrid model of fractional wavelet transform, feature selection, support vector machine and optimization algorith. Electron. (Switzerland) 10(18): 2021. https://doi.org/10.3390/electronics10182214

  16. Syah, R., Alizadeh, S.M., Nurgalieva, K.S., Guerrero, J.W.G., Nasution, M.K.M., Davarpanah, A., Ramdan, D., Metwally, A.S.M.: A laboratory approach to measure enhanced gas recoveray from a tight gas reservoir during supercritical carbon dioxide injection. Sustain. (Switzerland) 13(21): 2021. https://doi.org/10.3390/su132111606

  17. Shamir, L.: Automatic identification of outliers in Hubble Space Telescope galaxy images. Monthly Not. R. Astron. Soc. 501(4), 5229–5238 (2021). https://doi.org/10.1093/mnras/staa4036

    Article  Google Scholar 

  18. Carlisle, R.E., Acton, D.S.: Demonstration of extended capture range for James Webb Space Telescope phase retrieval. Appl. Opt. 54(21), 6454–6460 (2015). https://doi.org/10.1364/AO.54.006454

    Article  Google Scholar 

  19. Klotz, A.: Protocols for robotic telescope networks. Adv. Astron. 2010 (2010). https://doi.org/10.1155/2010/496765

  20. Spasova, M., Stoeva, P., Stoev, A.: Archaeoastronomy in the big data age: origin and peculiarities of obtaining data on objects and artifacts. In: Proceedings of the International Astronomical Union, Vol. 15, issue no. S367, pp. 55–457 (2019). https://doi.org/10.1017/S174392132100017X

  21. Schauer, P.: Comparison of photon transport efficiency in simple scintillation electron detector configurations for scanning electron microscope. Microsc. Res. Tech. 85(5), 1870–1883 (2022). https://doi.org/10.1002/jemt.24048

    Article  Google Scholar 

  22. Holmi, J.T., Lipsanen, H.: WITio: a MATLAB data evaluation toolbox to script broader insights into big data from WITec microscopes. SoftwareX 18 (2022). https://doi.org/10.1016/j.softx.2022.101009

  23. Belcastro, L., Cantini, R., Marozzo, F., Orsino, A., Talia, D., Trunfio, P.: Programming big data analysis: principles and solutions. J. Big Data 9(1), 1–50 (2022). https://doi.org/10.1186/s40537-021-00555-2

    Article  Google Scholar 

  24. Richards, B.A.: Model curriculum for a liberal arts degree in computer science. ACM J. Educ. Resour. Comput. 7(2), 2007 (2007). https://doi.org/10.1145/1240200.1240202

    Article  Google Scholar 

  25. Vandenbunder, B.: New objects, new actors, new ethical issues: the interfaces between biology, nanotechnologies and computer sciences. Ethique et Sante 7(1), 18–23 (2010). https://doi.org/10.1016/j.etiqe.2009.12.001

    Article  Google Scholar 

  26. Bea, D.B., Tejeda, A.P., Pardo, A.A., Cuador, J.C.: Nanomedicine: general aspects of a promissory future. Rev. Habanera de Ciencias Med. 10(3), 410–421 (2011)

    Google Scholar 

  27. Franks, A.: Nanotechnology. J. Phys. E: Sci. Instrum. 20(12), 1442–1451 (1987). https://doi.org/10.1088/0022.3735/20/001

    Article  Google Scholar 

  28. Rajneesh. Pathak, J., Singh, V., Kumar, D., Singh, S.P., Sinha, R.P.: DNA in nanotechnology: approaches and developments. Nanomater. Plants Algae Microorganisms 1: 79–102, 2018

    Google Scholar 

  29. Maher, K.O.: Nanomedicine and nanotechnology for heart failure research, diagnosis, and treatment. Heart Failure in the Child and Young Adult: From Bench to Bedside, pp. 779–784 (2018)

    Google Scholar 

  30. Afsana, F., Asif-Ur-Rahman, M., Ahmed, M.R., Mahmud, M., Shamim Kaiser, M.: An energy conserving routing scheme for wireless body sensor nanonetwork communication. IEEE Access 6, 9186–9200 (2018). https://doi.org/10.1109/ACCESS.2018.2789437

    Article  Google Scholar 

  31. Jadhav, S.S., Jadhav, S.V.: Application of nanotechnology in modern computers. In: 2018 International Conference on Circuits and Systems in Digital Enterprise Technology, ICCSDET (2018). https://doi.org/10.1109/ICCSDET.2018.8821086

  32. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F.: The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25(1) (2020). https://doi.org/10.3390/molecules25010112

  33. Azulay, H., Lutaty, A., Qvit, N.: How similar are proteins and Origami? Biomolecules 12(5): 2022. https://doi.org/10.3390/biom12050622

  34. Pathak, Y.V., Koomer, A.: Graduate programs on nanotechnology in pharmaceutical sciences. In: Technical Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2009, vol. 3, pp. 410–413 (2009)

    Google Scholar 

  35. Pugliese, R., Regondi, S., Marini, R.: Machine learning-based approach: global trends, research directions, and regulatory standpoints. Data Sci. and Manag. 4, 19–29 (2021). https://doi.org/10.1016/j.dsm.2021.12.002

    Article  Google Scholar 

  36. Nasution, M.K.M., Hidayat, R., Syah, R.: Computer science. Int. J. Adv. Sci. Eng. Inf. Technol. 12(3), 1142–1159 (2022). https://doi.org/10.18517/ijaseit.12.3.14832

  37. Hinchcliff, J.: The future of the university: some ethico-epistemological explorations. Horizon 14(2), 77–83 (2006). https://doi.org/10.1108/10748120610674049

    Article  Google Scholar 

  38. Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent computation by catalytic reactions. Nanotechnology 7(4), 307–314 (1996). https://doi.org/10.1088/0957-4484/7/4/001

    Article  Google Scholar 

  39. Remmert, V.R.: Galileo, god, and mathematics. In: Koetsier, T., Bergmans, L. (eds.) Mathematics and the Divine: A Historical Study, pp. 347–360. Tokyo, Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney (2005)

    Chapter  Google Scholar 

  40. Nasution, M.K.M.: Mathematical philosophy. J. Res. Math. Trends Technol. 2(2), 45–60 (2020). https://doi.org/10.32734/jormtt.v2i2.4678

  41. Nasution, M.K.M., Noah, S.A. M., Sitompul, O. S.: The excellent center: center for artificial intelligence technology. J. Phys. Conf. Ser. 1235 (2018)

    Google Scholar 

  42. Nasution, M.K.M.: The birth of a science. Hist. Sci. Technol. 10(2) (2020)

    Google Scholar 

  43. Kaewkamnerdpong, B., Bentley, P., Bhalla, N.: Programming nanotechnology: learning from nature. Adv. Comput. 71, 1–37 (2007). https://doi.org/10.1016/S0065-2458(06)71001-4

    Article  Google Scholar 

  44. Karp, R.M.: WI’07/IAT’07/BIBM’07/GrC’07 joint keynote: computer science as a lens on the sciences: the example of computational molecular biology. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2007, xxi (2007). https://doi.org/10.1109/IAT.2007.8

  45. Sanghera, P.: Quantum Physics for Scientists and Technologists: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists. Wiley (2011). https://doi.org/10.1002/9780470917121

  46. Vilela, N., Omar, P.: Intelligent computational nanotechnology: the role of computational intelligence in the development of nanoscience and nanotechnology. J. Comput. Theoret. Nanosci. 11(4), 928–944 (2014). https://doi.org/10.1166/jctn.2014.3446

    Article  Google Scholar 

  47. Nasution, M.K.M., Aulia, I., Elveny, M.: Data. J. Phys. Conf. Ser. 1245(1) (2019)

    Google Scholar 

  48. Nasution, M.K.M.: Understanding data toward going to data science. Cybern. Perspect. Syst. Lecture Notes in Networks and System (LNNS) 503, 478–489 (2022). https://doi.org/10.1007/978-3-031-09073-8_42

  49. Hoekstra, J.: Introduction to Nanoelectronic Single-Electron Circuit Design, 2nd edn. pp. 1–328 (2016). https://doi.org/10.1201/9781315364483

  50. Nasution, M.K.M.: Aplikasi hipergraf berarah terhadap sistem transit kota. Epsilon Jurnal Matematika dan Terapannya 1(2), 1–10 (2000). https://doi.org/10.13140/RG.2.2.21042.63684

  51. Syah, R., Nasution, M.K.M., Shol, V.V., Kireeva, N., Jalil, A.T., Chen, T.-C., Aravindhan, S., Abood, E.S., Alkaim, A.F.: Designing a green supply chain transportation system for an automotive company based on bi-objective optimization. Found. Comput. Decis. Sci. 47(2), 194–207 (2022). https://doi.org/10.2478/fcds-2022-0011

    Article  Google Scholar 

  52. Wang, R.-J., Xu, T.-P., She, C., Nasution, Mahyuddin.: A new design for programmable logic array based on QCA-based nanotechnology. Optik 253 (2022). https://doi.org/10.1016/j.ijleo.2022.168581

  53. Nasution, M.K.M.: Methodology. J. Phys.: Conf. Ser. 1566(13) (2020). https://doi.org/10.1088/1742-6596/1566/1/012031

  54. Maleki, F.K., Nasution, M.K.M., Gok, M.S., Arab Maleki, V.: An experimental investigation on mechanical properties of Fe2O3 microparticles reinforced polypropylene. J. Mater. Res. Technol. 16, 229–237 (2022). https://doi.org/10.1016/j.jmrt.2021.11.104

  55. Paidar, M., Bokov, D., Mehrez, S., Nasution, M.K.M., Ojo, O.O., Zain, A.M.: The influence of the backing plate materials on microstructure and mechanical properties of friction spot extrusion brazing of AA2024-T3 aluminum alloy and Brass sheets. J. Manuf. Process. 74, 28–39 (2022). https://doi.org/10.1016/j.jmapro.2021.12.002

    Article  Google Scholar 

  56. Azmi, Z., Nasution, M.K.M., Mawengkang, H.: Natural language processing to waterwheel with Jawa language. J. Phys.: Conf. Ser. 1116(2) (2018). https://doi.org/10.1088/1742-6596/1116/2/022007

  57. Paul, P.K., Dey, J.L.: Nanotechnology Vis–Vis Computing: With special references to cloud computing, big data management-A techno managerial knowledge study. In: 2017 Innovations in Power and Advanced Computing Technologies, i-PACT 2017, Vol. 2017 , pp. 1–5 (2017, January). https://doi.org/10.1109/IPACT.2017.8245151

  58. Centoducatte, R., de Oliveira, A. Z., Jorge, F. E., Camiletti, G. G.: ZORA double zeta basis sets for fifth row elements: Application in studies of electronic structure of atoms and molecules. Comput. Theor. Chem. 1207 (2022). https://doi.org/10.1016/j.comptc.2021.113511

  59. Shodja, H.M., Ghafarollahi, A., Enzevaee, C.: Surface/interface effect on the scattering of Love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. Int. J. Solids Struct. 108, 63–73 (2017). https://doi.org/10.1016/j.ijsolstr.2016.11.003

    Article  Google Scholar 

  60. Araújo, M.: Fibre Science: Understanding How It Works and Speculating on Its Future. RILEM Bookseries 12, 3–17. https://doi.org/10.1007/978-94-017-7515-1_1

  61. Xu, G., Ding, Y., Zhao, J., Hu, L., Fu, X.: Research on the Internet of things (IoT). Sens. Transducers 160(12), 463–471 (2013)

    Google Scholar 

  62. Gheorghe, G.I., Ilie, I., Istriteanu, S.: Research in micro-nano-robotics. Rom. Rev. Precis. Mecha. Opt. Mechatron. 46, 83–89 (2014)

    Google Scholar 

  63. Cheng, Z., Xiao, J.: Algorithmic tile self-assembly model for the minimum set cover problem. J. Bionanoscience 6(2), 69–77 (2012). https://doi.org/10.1166/jbns.2012.1079

    Article  MathSciNet  Google Scholar 

  64. Benjamin, N.D., Flores, C., Matlock, T., Lilian, P.D.: The emergence of immersive low-cost 3D virtual reality environments for interactive learning in materials science and engineering. MRS Online Proc. Libr. 1320(1), 1–7 (2011). https://doi.org/10.1557/opl.2011.636

    Article  Google Scholar 

  65. Paidar, M., Kazemi, A., Mehrez, S., Oladimeji Ojo, O., Matyuso Nasution, M.K., Mironov, S.N.: Investigation of modified friction stir clinching-brazing process of AA2024 Al/AZ31 Mg: metallurgical and mechanical properties. Arch. Civ. Mech. Eng. 21(3), 1–17 (2021). https://doi.org/10.1007/s43452-021-00267-7

    Article  Google Scholar 

  66. Paidar, M., Bokov, D., Nasution, M.K.M., Mehrez, S., Oladimeji, O.O., Omar Cooke, K.: Diffusion brazing of IN738 to SiC ceramic with Ag-Cu-Ti powder: effect of bonding time on metallurgical and mechanical properties. Results Phys. 31 2021. https://doi.org/10.1016/j.rinp.2021.104956

  67. Zhao, L., Nasution, M.K.M., Hekmatifar, M., Sabetyand, R., Kamenskov, P., Toghraie, D., Alizadeh, A., Iran, T.G.: The improvement of mechanical properties of conventional concretes using carbon nanoparticles using molecular dynamics simulation. Sci. Rep. 11(1) (2021). https://doi.org/10.1038/s41598-021-99616-y

  68. Paidar, M., Nasution, M.K.M., Mehrez, S., Bokov, D., Ramalingam, V.V., Zain, A.M.: The feasibility of friction stir spot extrusion-brazing of AA5083-H112 aluminum alloy to brass sheets with Zn interlayer. Mater. Lett. 3081 (2022). https://doi.org/10.1016/j.matlet.2021.131084

  69. Bai, J., Paidar, M., Mehrez, S., Ojo, O. O., Nasution, M. K. M., Zain, A. M.: Friction spot extrusion brazing of copper to AISI 304 stainless steel with Zn interlayer: effect of shoulder surface modification. Arch. Civ. Mech. Eng. 22(2) (2022). https://doi.org/10.1007/s43452-022-00386-9

  70. Weiss, C., Carriere, M., Fusco, L., Capua, I., Regla-Nava, J.A., Pasquali, M., Scott, J.A., Vitale, F., Vitale, F., Unal, M.A., Mattevi, C., Bedognetti, D.: Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14(6), 6383–6406 (2020). https://doi.org/10.1021/acsnano.0c03697

    Article  Google Scholar 

  71. Lund, K., Williams, B., Ke, Y., Liu, Y., Yan, H.: DNA nanotechnology: a rapidly evolving field. Curr. Nanosci. 2(2), 113–122 (2006). https://doi.org/10.2174/157341306776875811

    Article  Google Scholar 

  72. Goodman, R.P., Heilemann, M., Doose, S., Erben, C.M., Kapanidis, A.N., Turberfield, A.J.: Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3(2), 93–96 (2008). https://doi.org/10.1038/nnano.2008.3

    Article  Google Scholar 

  73. Razeghian, E., Nasution, M.K. M., Rahman, H.S., Gardanova, Z.R., Abdelbasset, W.K., Aravindhan, S., Bokov, D.O., Suksatan, W., Nakhaei, P., Shariatzadeh, S., Marofi, F., Yazdanifar, M.: A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res. Ther. 12(1) (2021). https://doi.org/10.1186/s13287-021-02510-7

  74. Chupradit, S., Nasution, M.K.M., Rahman, H.S., Suksatan, W., Turki Jalil, A., Abdelbasset, W.K., Bokov, D., Markov, A., Fardeeva, I.N., Widjaja, G., Shalaby, M.N., Saleh, M.M.: Various types of electrochemical biosensors for leukemia detection and therapeutic approaches. Anal. Biochem. (2022). https://doi.org/10.1016/j.ab.2022.114736

  75. Nasution, M.K.M., Harahap, A.S., Nasution, S., Herawati, E.: Triangle number of laurent polynomial for the closed braids \(\sigma ^{2j}\). In: IOP Conference Series: Materials Science and Engineering, vol. 300, Issue No. 1 (2018). IOP Conference Series: Materials Science and EngineeringOpen Access, vol. 300, Issue 115 (2018, February)

    Google Scholar 

  76. Nasution, M.K.M.: A computation in the braid group. IOP Conf. Ser.: Mater. Sci. Eng. 725(1) (2020). https://doi.org/10.1088/1757-899X/725/1/012101

  77. Li, H., Lee, T., Dziubla, T., Pi, F., Guo, S., Xu, J., Li, C., Haque, F., Liang, X.-J., Guo, P.: RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 10(5), 631–655 (2015). https://doi.org/10.1016/j.nantod.2015.09.003

    Article  Google Scholar 

  78. Soundararajan, H.C., Sivanandham, M.: Quantitative analysis of hepatitis B virion stability upon single-site amino acid mutation based on computational nanotechnology. Mol. Simul. 35(6), 456–465 (2009). https://doi.org/10.1080/08927020802616699

    Article  Google Scholar 

  79. Eshaghian-Wilner, M.M.: DNA sequence matching at nanoscale level. Bio-Inspired Nanoscale Integr. Comput. 1–555 (2009). https://doi.org/10.1002/9780470429983

  80. Angelidis, P.A.: Uptake of Mobile ICT Health Services: Has the Time Come to become Commodity? In: Granelli, F., Skianis, C., Chatzimisios, P., Xiao, Y., Redana, S. (eds.) Mobilight 2009. LNICSSITE, vol. 13, pp. 292–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03819-8_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahyuddin K. M. Nasution .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasution, M.K.M., Syah, R., Elveny, M. (2023). Nanotechnology on Perspective Computer Science. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Application in Systems Design. CoMeSySo 2022. Lecture Notes in Networks and Systems, vol 596. Springer, Cham. https://doi.org/10.1007/978-3-031-21435-6_36

Download citation

Publish with us

Policies and ethics