Skip to main content

Orchestration Strategies for Enabling Coexistence Between 5G New Radio Access Technologies and Federated Scientific Instruments for Atmospheric Observation

  • Conference paper
  • First Online:
Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022) (UCAmI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 594))

  • 863 Accesses

Abstract

Nowadays, several of the most important scientific missions are based on the observation of atmospheric events. Monitoring the ozone layer, analyzing the effects of the climate change, or predicting natural disasters requires the creation of temperature or water vapor profiles that are typically generated through federated scientific instruments such as microwave radiometers. Geographically sparse federated radiometers analyze the electromagnetic power absorption of the atmosphere at different frequencies and transmit the results to computation centers (where maps and profiles are calculated) using broadband communications. Traditionally, mobile broadband communications and radiometers operate at different frequencies, and they do not interact. Microwave radiometers operate at the V band (40 – 75 GHz) and/or the K band (12 – 40 GHz), while old generations of mobile networks operate below 3 GHz. However, 5G New Radio access technologies may change that, as they may operate on frequencies from 24.25 GHz to 71.0 GHz. In this paper we analyze the interference between future 5G New Radio access technologies and microwave radiometers through numerical models and propose an orchestration mechanism to enable the coexistence between both infrastructures. The orchestration engine executes an intelligent time division multiple access algorithm to coordinate the use of the frequency spectrum, so the 5G network performance still meets the expected Quality-of-Service, measurements taken by radiometers are precise, and federated scientific services can operate normally. To validate the performance of the proposed mathematical framework, we implemented a simulation scenario using MATLAB. Our results show the proposed approach reduces interferences between 5G networks and scientific instruments up to 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubovik, O., et al.: Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives. J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019)

    Article  Google Scholar 

  2. Turner, A.J., Frankenberg, C., Kort, E.A.: Interpreting contemporary trends in atmospheric methane. Proc. Natl. Acad. Sci. 116(8), 2805–2813 (2019)

    Article  Google Scholar 

  3. Heiskanen, J., et al.: The integrated carbon observation system in Europe. Bull. Am. Meteor. Soc. 103(3), E855–E872 (2022)

    Article  Google Scholar 

  4. Martín, D., Bordel, B., Alcarria, R., Sánchez-Picot, Á., de Rivera, D.S., Robles, T.: Prosumerization approach to semantic ambient intelligence platforms. In: Ochoa, S.F., Singh, P., Bravo, J. (eds.) UCAmI 2017. LNCS, vol. 10586, pp. 109–120. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67585-5_12

    Chapter  Google Scholar 

  5. Rüfenacht, R., et al.: EUMETNET opens to microwave radiometers for operational thermodynamical profiling in Europe. Bull. Atmos. Sci. Technol. 2(1–4), 1–5 (2021). https://doi.org/10.1007/s42865-021-00033-w

    Article  Google Scholar 

  6. Le Vine, D., Skou, N.: Microwave radiometer systems: design and analysis. Artech (2006)

    Google Scholar 

  7. Robles, T., Bordel, B., Alcarria, R., de Andrés, D.M.: Mobile wireless sensor networks: modeling and analysis of three-dimensional scenarios and neighbor discovery in mobile data collection. Ad Hoc Sens. Wirel. Networks 35(1–2), 67–104 (2017)

    Google Scholar 

  8. Bordel, B., Alcarria, R., Chung, J., Kettimuthu, R., Robles, T.: Evaluation and modeling of microprocessors’ numerical precision impact on 5G enhanced mobile broadband communications. In: Rocha, Á., Ferrás, C., López-López, P.C., Guarda, T. (eds.) ICITS 2021. AISC, vol. 1330, pp. 267–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68285-9_26

    Chapter  Google Scholar 

  9. Abdullah, D.M., Ameen, S.Y.: Enhanced mobile broadband (EMBB): a review. J. Inf. Technol. Inform. 1(1), 13–19 (2021)

    Google Scholar 

  10. Bordel Sánchez, B., Alcarria, R., Robles, T.: Managing wireless communications for emergency situations in urban environments through cyber-physical systems and 5G technologies. Electronics 9(9), 1524 (2020)

    Article  Google Scholar 

  11. Molisch, A.F., et al.: Hybrid beamforming for massive MIMO: a survey. IEEE Commun. Mag. 55(9), 134–141 (2017)

    Article  Google Scholar 

  12. Vook, F.W., Ghosh, A., Diarte, E., Murphy, M.: 5G new radio: overview and performance. In: 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pp. 1247–1251. IEEE (2018)

    Google Scholar 

  13. Ancans, G., Bobrovs, V., Haidine, A., Aqqal, A.: Spectrum usage for 5G mobile communication systems and electromagnetic compatibility with existent technologies. In: Broadband Communications Networks-Recent Advances and Lessons from Practice, pp. 27–41. IntechOpen, United Kingdom, London (2017)

    Google Scholar 

  14. Abubakar, I., Din, J., Alhilali, M., Lam, H.Y.: Interference and electromagnetic compatibility challenges in 5G wireless network deployments. Indonesian J. Electr. Eng. Comput. Sci. 5(3), 612–621 (2017)

    Article  Google Scholar 

  15. Ibrahim, N.A., Rahman, T.A., Elijah, O.: Recent Trend in electromagnetic radiation and compliance assessments for 5G communication. Int. J. Electr. Comput. Eng. 7(2), 2088–8708 (2017)

    Google Scholar 

  16. Xu, B., Colombi, D., Törnevik, C., Ghasemifard, F., Chen, J.: On actual maximum exposure from 5G multicolumn radio base station antennas for electromagnetic field compliance assessment. IEEE Trans. Electromagn. Compat. 63(5), 1680–1689 (2021)

    Article  Google Scholar 

  17. Moongilan, D.: 5G Internet of Things (IOT) near and far-fields and regulatory compliance intricacies. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 894–898. IEEE (2019)

    Google Scholar 

  18. Ancans, G., Stankevicius, E., Bobrovs, V., Ivanovs, G.: Estimation of electromagnetic compatibility between DVB-T/DVB-T2 and 4G/5G in the 700 MHz band for co-channel case. Latv. J. Phys. Tech. Sci. 57(5), 30–38 (2020)

    Google Scholar 

  19. Fors, K., Axell, E., Linder, S., Stenumgaard, P.: On the impact of CW interference on 5G NR. In: 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE, pp. 1049–1054. IEEE (2019)

    Google Scholar 

  20. Bordel, B., Alcarria, R., Robles, T., Martín, D.: Cyber–physical systems: extending pervasive sensing from control theory to the Internet of Things. Pervasive Mob. Comput. 40, 156–184 (2017)

    Article  Google Scholar 

  21. Moongilan, D.: 5G wireless communications (60 GHz band) for smart grid—An EMC perspective. In: 2016 IEEE International Symposium on Electromagnetic Compatibility (EMC), pp. 689–694. IEEE (2016)

    Google Scholar 

  22. Lv, H., et al.: A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Func. Mater. 29(14), 1900163 (2019)

    Article  Google Scholar 

  23. Zhang, J., Yan, L., Gao, R.X.K., Wang, C., Zhao, X.: A novel 3D ultra-wide stopband frequency selective surface for 5G electromagnetic shielding. In: 2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE, pp. 1–4. IEEE (2020)

    Google Scholar 

  24. Tikhvinskiy, V., Koval, V., Korchagin, P., Aitmagambetov, A.: Experimental studies of electromagnetic compatibility between 5G network transmitters and receivers operating in earth exploration-satellite service and space research service in the 27 GHz band. In: 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), pp. 1–4. IEEE (2021)

    Google Scholar 

  25. Eichen, E.: Real-time geographical spectrum sharing by 5G networks and earth exploration satellite services. In: 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1–2. IEEE (2019)

    Google Scholar 

  26. Eichen, E. Performance of real-time geospatial spectrum sharing (RGSS) between 5G communication networks and earth exploration satellite services. In: 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 73–79. IEEE (2021)

    Google Scholar 

  27. Yousefvand, M., Wu, C.T.M., Wang, R.Q., Brodie, J., Mandayam, N.: Modeling the impact of 5G leakage on weather prediction. In: 2020 IEEE 3rd 5G World Forum (5GWF), pp. 291–296. IEEE (2020)

    Google Scholar 

  28. Ghosh, A., Maeder, A., Baker, M., Chandramouli, D.: 5G evolution: a view on 5G cellular technology beyond 3GPP release 15. IEEE Access 7, 127639–127651 (2019)

    Article  Google Scholar 

  29. Sun, L., Li, Y., Zhang, Z., Feng, Z.: Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metal-rimmed smartphones. IEEE Trans. Antennas Propag. 68(4), 2494–2503 (2019)

    Article  Google Scholar 

  30. Feliciano, W.: Design and Implementation of a Radiometer and Rain Data Collection System for a Ka-band LEO Ground Station. Doctoral dissertation, University of Akron (2009)

    Google Scholar 

  31. Narayanan, A., et al.: A comparative measurement study of commercial 5G mmWave deployments. In: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, pp. 800–809. IEEE (2022)

    Google Scholar 

  32. Sohul, M.M., Yao, M., Yang, T., Reed, J.H.: Spectrum access system for the citizen broadband radio service. IEEE Commun. Mag. 53(7), 18–25 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The publication is produced within the framework of Ramón Alcarria y Borja Bordel's research projects on the occasion of their stay at Argonne Labs (José Castillejo’s 2021 grant). This work is supported by the Ministry of Science, Innovation and Universities through the COGNOS project (PID2019-105484RB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Bordel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bordel, B., Alcarria, R., Chung, J., Kettimuthu, R., Robles, T. (2023). Orchestration Strategies for Enabling Coexistence Between 5G New Radio Access Technologies and Federated Scientific Instruments for Atmospheric Observation. In: Bravo, J., Ochoa, S., Favela, J. (eds) Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022). UCAmI 2022. Lecture Notes in Networks and Systems, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-21333-5_48

Download citation

Publish with us

Policies and ethics