Skip to main content

Robust Anomaly Detection via Radio Fingerprinting in LoRa-Enabled IIoT

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13620))

  • 797 Accesses

Abstract

Long Range (LoRa) communications are gaining popularity in the Industrial Internet of Things (IIoT) domain due to their large coverage and high energy efficiency. However, LoRa-enabled IIoT networks are susceptible to cyberattacks mainly due to their wide transmission window and freely operated frequency band. This has led to several categories of cyberattacks. However, existing intrusion detection systems are inefficient in detecting compromised device due to the dense deployment and heterogeneous devices. This work introduces \(\textsf{Hawk}\), a distributed anomaly detection system for detecting compromised devices in LoRa-enabled IIoT. \(\textsf{Hawk}\) first measures a device-type specific physical layer feature, Carrier Frequency Offset (CFO) and then leverages the CFO for fingerprinting the device and consequently detecting anomalous deviations in the CFO behavior, potentially caused by adversaries. To aggregate the device-type specific CFO behavior profile efficiently, \(\textsf{Hawk}\) uses federated learning. To the best of our knowledge, \(\textsf{Hawk}\) is the first to use a federated learning method for anomaly-based intrusion detection in LoRa-enabled IIoT. We perform extensive experiments on a real-world dataset collected using 60 LoRa devices, primarily to assess the effectiveness of \(\textsf{Hawk}\) against passive attacks. The results show that \(\textsf{Hawk}\) improves the detection accuracy by 8% and reduces the storage overhead by 40% than the state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Figueroa-Lorenzo, S., Añorga, J., Arrizabalaga, S.: A survey of IIoT protocols: a measure of vulnerability risk analysis based on CVSS. ACM Comput. Surv. 53(2), 1–53 (2020)

    Article  Google Scholar 

  2. Sundaram, J.P.S., Du, W., Zhao, Z.: A survey on loRa networking: research problems, current solutions, and open issues. IEEE Commun. Surv. Tutorials 22(1), 371–388 (2019)

    Article  Google Scholar 

  3. Heeger, D., Plusquellic, J.: Analysis of IoT authentication over LoRa. In: 16th International Proceedings on DCOSS, pp. 458–465. IEEE, California, USA (2020)

    Google Scholar 

  4. Chen, D., et al.: Privacy-preserving encrypted traffic inspection with symmetric cryptographic techniques in IoT. IEEE Internet Things J. 1–15 (2022)

    Google Scholar 

  5. Yan, X., Xu, Y., Xing, X., Cui, B., Guo, Z., Guo, T.: Trustworthy network anomaly detection based on an adaptive learning rate and momentum in IIoT. IEEE Trans. Indust. Inf. 16(9), 6182–6192 (2020)

    Article  Google Scholar 

  6. Abdel-Basset, M., Chang, V., Hawash, H., Chakrabortty, R.K., Ryan, M.: Deep-ifs: intrusion detection approach for IIoT traffic in fog environment. IEEE Trans. Indust. Inf. 17(11), 7704–7715 (2021)

    Article  Google Scholar 

  7. Babun, L., Aksu, H., Uluagac, A.S.: CPS device-class identification via behavioral fingerprinting: from theory to practice. IEEE Trans. Inf. Forensics Secur. 16, 2413–2428 (2021)

    Google Scholar 

  8. Zhang, J., Woods, R., Sandell, M., Valkama, M., Marshall, A., Cavallaro, J.: Radio frequency fingerprint identification for narrowband systems, modelling and classification. IEEE Trans. Inf. Forensics Secur. 16, 3974–3987 (2021)

    Google Scholar 

  9. Ren, Z., Ren, P., Zhang, T.: Deep RF device fingerprinting by semi-supervised learning with meta pseudo time-frequency labels. In: Proceedings on IEEE WCNC, pp. 2369–2374. IEEE, California, USA (2022)

    Google Scholar 

  10. Shen, G., Zhang, J., Marshall, A., Cavallaro, J.: Towards scalable and channel-robust radio frequency fingerprint identification for LoRa. IEEE Trans. Inf. Forensics Secur. 17, 774–787 (2022)

    Google Scholar 

  11. Xie, R., et al.: A generalizable model-and-data driven approach for open-set RFF authentication. IEEE Trans. Inf. Forensics Secur. 16, 4435–4450 (2021)

    Google Scholar 

  12. Rey, V., Sánchez, P.M.S., Celdrán, A.H., Bovet, G.: Federated learning for malware detection in IoT devices. Comput. Networks 204 (2022)

    Google Scholar 

  13. Hou, W., Wang, X., Chouinard, J.-Y., Refaey, A.: Physical layer authentication for mobile systems with time-varying carrier frequency offsets. IEEE Trans. Commun. 62(5), 1658–1667 (2014)

    Article  Google Scholar 

  14. Haddadpajouh, H., Mohtadi, A., Dehghantanaha, A., Karimipour, H., Lin, X., Choo, K.-K.R.: A multi-kernel and meta-heuristic feature selection approach for IoT malware threat hunting in the edge layer. IEEE Internet Things J. 8(6), 4540–4547 (2021)

    Article  Google Scholar 

  15. Heeger, D., Plusquellic, J.: Slora: towards secure LoRa communications with fine-grained physical layer features. In: 18th International Proceedings on SenSys, pp. 258–270. ACM, Yokohama, Japan (2020)

    Google Scholar 

  16. Huong, T., et al.: Detecting cyberattacks using anomaly detection in industrial control systems: a federated learning approach. Comput. Indust. 132 (2021)

    Google Scholar 

  17. Perdisci, R., Papastergiou, T., Alrawi, O., Antonakakis, M.: Iotfinder: efficient large-scale identification of IoT devices via passive DNS traffic analysis. In: 5th International Proceedings on EuroS &P, pp. 474–489. IEEE, Genova, Italy (2020)

    Google Scholar 

  18. Dong, S., Li, Z., Tang, D., Chen, J., Sun, M., Zhang, K.: Your smart home can’t keep a secret: towards automated fingerprinting of IoT traffic. In: 15th International Proceedings on AsiaCCS, pp. 47–59. ACM, Taipei, Taiwan (2020)

    Google Scholar 

  19. Haugerud, H., Tran, H.N., Aitsaadi, N., Yazidi, A.: A dynamic and scalable parallel network intrusion detection system using intelligent rule ordering and network function virtualization. Future Gener. Comput. Syst. 124, 254–267 (2021)

    Article  Google Scholar 

  20. Lu, K.-D., Zeng, G.-Q., Luo, X., Weng, J., Luo, W., Wu, Y.: Evolutionary deep belief network for cyber-attack detection in industrial automation and control system. IEEE Trans. Indust. Inf. 17(11), 7618–7627 (2021)

    Article  Google Scholar 

  21. Charyyev, B., Gunes, M.H.: Locality-sensitive IoT network traffic fingerprinting for device identification. IEEE Internet Things J. 8(3), 1272–1281 (2021)

    Article  Google Scholar 

  22. LoRa Modulation Crystal Oscillator Guidance, AN1200.14, Rev 2, July 2017. https://lora-developers.semtech.com/library/product-documents/. Accessed 6 May 2021

  23. Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi, A.-R.: DIoT: a federated self-learning anomaly detection system for IoT. In: 39th International Proceedings on IEEE ICDCS, pp. 756–767. IEEE, Dallas, USA (2019)

    Google Scholar 

Download references

Acknowledgment

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement No. 847577; and a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3918 (Ireland’s European Structural and Investment Funds Programmes and the European Regional Development Fund 2014–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Halder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halder, S., Newe, T. (2022). Robust Anomaly Detection via Radio Fingerprinting in LoRa-Enabled IIoT. In: Su, C., Gritzalis, D., Piuri, V. (eds) Information Security Practice and Experience. ISPEC 2022. Lecture Notes in Computer Science, vol 13620. Springer, Cham. https://doi.org/10.1007/978-3-031-21280-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21280-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21279-6

  • Online ISBN: 978-3-031-21280-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics