Skip to main content

Neuropathy

  • Chapter
  • First Online:
Transplantation of the Pancreas

Abstract

Polyneuropathy affecting somatic and autonomic nerves is a common and disabling secondary complication of long-term diabetes mellitus. The vast majority of type 1 diabetic patients undergoing a pancreas transplant (PTx) have already developed moderate-to-severe neuropathy involving all nerve function modalities, as evaluated by neurological examination, motor and sensory nerve conduction, cardiovascular and sudomotor autonomic tests. Our large prospective study with 10 years of follow-up demonstrated that polyneuropathy improved in patients who achieved a normoglycemic state after a successful PTx, in contrast to the progression observed in the control group that was treated with insulin. Improvement was maintained over 10-year follow-up after PTx and was more marked for somatic than for autonomic functions. The improvement of nerve function contributed to a higher level in general life activities, and also correlated with a significant reduction in mortality in transplanted patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care. 1978;1:168–88, 252–63.

    Article  Google Scholar 

  2. Boulton AJM, Knight G, Drury J, et al. The prevalence of symptomatic diabetic neuropathy in an insulin-treated population. Diabetes Care. 1985;8:125–8.

    Article  CAS  PubMed  Google Scholar 

  3. Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study. Neurology. 1993;43:817–24.

    Article  CAS  PubMed  Google Scholar 

  4. Hendriksen PH, Oey PL, Wieneke GH, et al. Subclinical diabetic polyneuropathy: early detection of involvement of different nerve fibre types. J Neurol Neurosurg Psychiatry. 1993;56:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levy DM, Abraham RR, Abraham RM. Small- and large-fiber involvement in early diabetic neuropathy: a study with the medial plantar response and sensory thresholds. Diabetes Care. 1987;10:441–7.

    Article  CAS  PubMed  Google Scholar 

  6. Young RJ, Zhou YQ, Rodriguez E, et al. Variable relationship between peripheral somatic and autonomic neuropathy in patients with different syndromes of diabetic polyneuropathy. Diabetes. 1986;35:192–7.

    Article  CAS  PubMed  Google Scholar 

  7. Pfeifer MA, Weinberg CR, Cook DL, et al. Autonomic neural dysfunction in recently diagnosed diabetic subjects. Diabetes Care. 1984;7:447–53.

    Article  CAS  PubMed  Google Scholar 

  8. Ziegler D, Mayer P, Mühlen H, et al. The natural history of somatosensory and autonomic nerve dysfunction in relation to glycaemic control during the first 5 years after diagnosis of type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1991;34:822–9.

    Article  CAS  PubMed  Google Scholar 

  9. Solders G, Thalme B, Aguirre-Aquino M, et al. Nerve conduction and autonomic nerve function in diabetic children. A 10-year follow-up study. Acta Paediatr. 1997;86:361–6.

    Article  CAS  PubMed  Google Scholar 

  10. Brown MJ, Asbury AK. Diabetic neuropathy. Ann Neurol. 1984;15:2–12.

    Article  CAS  PubMed  Google Scholar 

  11. Amthor K-F, Dahl-Jørgensen K, Berg TJ, et al. The effect of 8 years of strict glycaemic control on peripheral nerve function in IDDM patients: the Oslo Study. Diabetologia. 1994;37:579–84.

    Article  CAS  PubMed  Google Scholar 

  12. Feldman EL, Nave KA, Jensen TS, Bennett DLH. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron. 2017;93:1296–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holman RR, Mayon-White V, Orde-Peckar C, et al. Prevention of deterioration of renal and sensory-nerve function by more intensive management of insulin-dependent diabetic patients: a two year randomized prospective study. Lancet. 1983;1:204–8.

    Article  CAS  PubMed  Google Scholar 

  14. Fedele D, Negrin P, Cardone C, et al. Influence of continuous subcutaneous insulin infusion (CSII) treatment on diabetic somatic and autonomic neuropathy. J Endocrinol Investig. 1984;7:623–8.

    Article  CAS  Google Scholar 

  15. Service FJ, Rizza RA, Daube JR, et al. Near normoglycemia improved nerve conduction and vibration sensation in diabetic neuropathy. Diabetologia. 1985;28:722–7.

    Article  PubMed  Google Scholar 

  16. Dahl-Jørgensen K, Brinchmann-Hansen O, Hanssen KF, et al. Effect of near normoglycaemia on progression of early diabetic retinopathy, nephropathy, and neuropathy: the Oslo study. Br Med J. 1986;293:1195–9.

    Article  Google Scholar 

  17. Ehle AL, Raskin P. Increased nerve conduction in diabetics after a year of improved glucoregulation. J Neurol Sci. 1986;74:191–7.

    Article  CAS  PubMed  Google Scholar 

  18. Krönert K, Hülser J, Luft D, et al. Effects of continuous subcutaneous insulin infusion and intensified conventional therapy on peripheral and autonomic nerve dysfunction. J Clin Endocrinol Metab. 1987;64:1219–23.

    Article  PubMed  Google Scholar 

  19. Judzewitsch RG, Jaspan JB, Polonsky KS, et al. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N Engl J Med. 1983;308:119–25.

    Article  CAS  PubMed  Google Scholar 

  20. Pfeifer MA. Effects of glycemic control and aldose reductase inhibition on nerve conduction velocity. Am J Med. 1985;79(5):18–23.

    Article  CAS  PubMed  Google Scholar 

  21. Sima AAF, Bril V, Nathaniel V, et al. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med. 1988;319:548–55.

    Article  CAS  PubMed  Google Scholar 

  22. Sorbinil Retinopathy Trial Research Group. The Sorbinil retinopathy trial: neuropathy results. Neurology. 1993;43:1141–9.

    Article  Google Scholar 

  23. Greene DA, Arezzo JC, Brown MB, et al. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Neurology. 1999;53:580–91.

    Article  CAS  PubMed  Google Scholar 

  24. Reichard P, Nilsson B-Y, Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993;329:304–9.

    Article  CAS  PubMed  Google Scholar 

  25. Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  26. Diabetes Control and Complications Trial (DCCT) Research Group. Effect of intensive diabetes treatment on nerve conduction in the Diabetes Control and Complications Trial. Ann Neurol. 1995;38:869–80.

    Article  Google Scholar 

  27. Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med. 1995;122:561–8.

    Article  Google Scholar 

  28. Linn T, Ortac K, Laube H, Federlin K. Intensive therapy in adult insulin-dependent diabetes mellitus is associated with improved insulin sensitivity and reserve: a randomized, controlled, prospective study over 5 years in newly diagnosed patients. Metabolism. 1996;45:1508–13.

    Article  CAS  PubMed  Google Scholar 

  29. Callaghan BC, Little AA, Feldman EL, Hughes RA. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012;6:CD007543.

    PubMed  Google Scholar 

  30. Fullerton B, Jeitler K, Seitz M, et al. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst Rev. 2014;2014:CD009122.

    PubMed  PubMed Central  Google Scholar 

  31. Committee on Health Care Issues. Does improved control of glycaemia prevent or ameliorate diabetic polyneuropathy? Ann Neurol. 1986;19:288–90.

    Article  Google Scholar 

  32. Ziegler D, Dannehl K, Wiefels K, et al. Differential effects of near-normoglycaemia for 4 years on somatic nerve dysfunction and heart rate variation in type 1 diabetic patients. Diabet Med. 1992;9:622–9.

    Article  CAS  PubMed  Google Scholar 

  33. Peripheral Nerve Society. Diabetic polyneuropathy in controlled clinical trials: consensus report of the Peripheral Nerve Society. Ann Neurol. 1995;38:478–82.

    Article  Google Scholar 

  34. Morel P, Goetz FC, Moudry-Munns KC, et al. Long-term glucose control in patients with pancreatic transplants. Ann Intern Med. 1991;115:694–9.

    Article  CAS  PubMed  Google Scholar 

  35. Cottrell DA. Normalization of insulin sensitivity and glucose homeostasis in type I diabetic pancreas transplant recipients: a 48-month cross-sectional study – A Clinical Research Center study. J Clin Endocrinol Metab. 1996;81:3513–9.

    CAS  PubMed  Google Scholar 

  36. Robertson RP, Sutherland DER, Kendall DM, et al. Metabolic characterization of long-term successful pancreas transplants in type I diabetes. J Investig Med. 1996;44:1–7.

    Google Scholar 

  37. Bolinder J, Wahrenberg H, Linde B, et al. Effect of pancreas transplantation on glucose counterregulation in insulin-dependent diabetic patients prone to severe hypoglycemia. J Intern Med. 1992;230:527–33.

    Article  Google Scholar 

  38. Kendall DM, Rooney DP, Smets YFC, et al. Pancreas transplantation restores epinephrine response and symptom recognition during hypoglycemia in patients with long-standing type I diabetes and autonomic neuropathy. Diabetes. 1997;46:249–57.

    Article  CAS  PubMed  Google Scholar 

  39. Pyke DA. Pancreas transplantation. Diabetes Metab Rev. 1991;7:3–14.

    Article  CAS  PubMed  Google Scholar 

  40. Ross MA. Neuropathies associated with diabetes. Med Clin N Am. 1993;77:111–24.

    Article  CAS  PubMed  Google Scholar 

  41. Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:136–54.

    Article  CAS  PubMed  Google Scholar 

  42. Boyko EJ, Ahroni JH, Stensel V, et al. A prospective study of risk factors for diabetic foot ulcer. The Seattle Diabetic Foot Study. Diabetes Care. 1999;22:1036–42.

    Article  CAS  PubMed  Google Scholar 

  43. Maser RE, Steenkiste AR, Dorman JS, et al. Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes. 1989;38:1456–61.

    Article  CAS  PubMed  Google Scholar 

  44. DCCT Research Group. Factors in development of diabetic neuropathy. Baseline analysis of neuropathy in feasibility phase of Diabetes Control and Complications Trial (DCCT). Diabetes. 1988;37:476–81.

    Article  Google Scholar 

  45. Franklin GM, Kahn LB, Baxter J, et al. Sensory neuropathy in non-insulin-dependent diabetes mellitus. The San Luis Valley Diabetes Study. Am J Epidemiol. 1990;131:633–43.

    Article  CAS  PubMed  Google Scholar 

  46. Tesfaye S, Stevens LK, Stephenson JM, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complications Study. Diabetologia. 1996;39:1377–84.

    Article  CAS  PubMed  Google Scholar 

  47. Maser RE, Becker DJ, Drash AL, et al. Pittsburgh Epidemiology of Diabetes Complications Study. Measuring diabetic neuropathy follow-up study results. Diabetes Care. 1992;15:525–7.

    Article  CAS  PubMed  Google Scholar 

  48. Jaiswal M, Divers J, Dabelea D, et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes: SEARCH for Diabetes in Youth Study. Diabetes Care. 2017;40:1226–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Christen WG, Manson JE, Bubes V, et al. Risk factors for progression of distal symmetric polyneuropathy in type I diabetes mellitus. Am J Epidemiol. 1999;150:1142–51.

    Article  CAS  PubMed  Google Scholar 

  50. Greene DA, Sima AAF, Pfeifer MA, et al. Diabetic neuropathy. Ann Rev Med. 1990;41:303–17.

    Article  CAS  PubMed  Google Scholar 

  51. Thomas PK, Tomlinson DR. Diabetic and hypoglycemic neuropathy. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy. Philadelphia: Saunders; 1993. p. 1219–50.

    Google Scholar 

  52. Sasaki H, Kawamura N, Dyck PJ, et al. Spectrum of diabetic neuropathies. Diabetol Int. 2020;11:87–96.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Asbury AK. Focal and multifocal neuropathies of diabetes. In: Dyck PJ, Thomas PK, Asbury AK, Winegrad AI, Porte D, editors. Diabetic neuropathy. Philadelphia: Saunders; 1987. p. 45–55.

    Google Scholar 

  54. LeQuesne PM, Fowler CF, Parkhouse N. Peripheral neuropathy profile in various groups of diabetics. J Neurol Neurosurg Psychiatry. 1990;53:558–63.

    Article  CAS  Google Scholar 

  55. Mulder DW, Lambert EH, Bastrom JA, et al. The neuropathies associated with diabetes mellitus. A clinical and electromyographic study of 103 unselected diabetic patients. Neurology. 1961;11:275–84.

    Google Scholar 

  56. Daube JR. Electrophysiologic testing in diabetic neuropathy. In: Dyck PJ, Thomas PK, editors. Diabetic neuropathy. Philadelphia: Saunders; 1999. p. 222–38.

    Google Scholar 

  57. Neil HAW, Thopson AV, John S, et al. Diabetic autonomic neuropathy: the prevalence of impaired heart rate variability in a geographically defined population. Diabet Med. 1988;6:20–4.

    Article  Google Scholar 

  58. Kennedy WR, Navarro X, Sutherland DER. Neuropathy profile of diabetic patients in a pancreas transplantation program. Neurology. 1995;45:773–80.

    Article  CAS  PubMed  Google Scholar 

  59. Edmonds ME, Watkins PJ. Clinical presentations of diabetic autonomic failure. In: Bannister R, Mathias CJ, editors. Autonomic failure. 3rd ed. Oxford: Oxford University Press; 1993. p. 698–720.

    Google Scholar 

  60. Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. Quart J Med. 1980;93:95–108.

    Google Scholar 

  61. Page MB, Watkins PJ. Cardiorespiratory arrest and diabetic autonomic neuropathy. Lancet. 1978;1:14–6.

    Article  CAS  PubMed  Google Scholar 

  62. Niakan E, Harati Y, Rolak R, et al. Silent myocardial infarction and diabetic cardiovascular autonomic neuropathy. Arch Intern Med. 1986;46:2229–30.

    Article  Google Scholar 

  63. Zola B, Khan JK, Juni JE, et al. Abnormal cardiac function in diabetic patients with autonomic neuropathy in the absence of ischemic heart disease. J Clin Endocrinol Metab. 1986;63:208–14.

    Article  CAS  PubMed  Google Scholar 

  64. Malcolm A, Camilleri M. Assessment of gastrointestinal function. In: Dyck PJ, Thomas PK, editors. Diabetic neuropathy. Philadelphia: Saunders; 1999. p. 211–21.

    Google Scholar 

  65. McCulloch DK, Young RJ, Prescott RJ, et al. The natural history of impotence in diabetic men. Diabetologia. 1984;26:437–40.

    Article  CAS  PubMed  Google Scholar 

  66. Kennedy WR, Navarro X. Sympathetic sudomotor function in diabetic neuropathy. Arch Neurol. 1989;46:1182–6.

    Article  CAS  PubMed  Google Scholar 

  67. Landgraf R. Impact of pancreas transplantation on diabetic secondary complications and quality of life. Diabetologia. 1996;39:1415–24.

    Article  CAS  PubMed  Google Scholar 

  68. Navarro X, Sutherland DER, Kennedy WR. Long term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol. 1997;42:727–36.

    Article  CAS  PubMed  Google Scholar 

  69. Greene DA, Brown MJ, Braunstein SN, et al. Comparison of clinical course and sequential electrophysiological tests in diabetics with symptomatic polyneuropathy and its implications for clinical trials. Diabetes. 1981;30:139–47.

    Article  CAS  PubMed  Google Scholar 

  70. Pfeifer MA, Schumer MP. Clinical trials of diabetic neuropathy: past, present, and future. Diabetes. 1995;44:1355–61.

    Article  CAS  PubMed  Google Scholar 

  71. Gibbons CH, Freeman R, Tecilazich F, et al. The evolving natural history of neurophysiologic function in patients with well-controlled diabetes. J Peripher Nerv Syst. 2013;18(2):153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sutherland DER, Dunn DL, Goetz FC, et al. A 10-year experience with 290 pancreas transplants at a single institution. Ann Surg. 1989;210:274–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sutherland DER, Gruessner RWG, Gores PF, et al. Pancreas transplantation: an update. Diabetes Metab Rev. 1995;11:337–63.

    Article  CAS  PubMed  Google Scholar 

  74. Kennedy WR, Navarro X, Sakuta M, et al. Physiological and clinical correlates of cardiorespiratory reflexes in diabetes mellitus. Diabetes Care. 1989;12:399–408.

    Article  CAS  PubMed  Google Scholar 

  75. Kennedy WR, Navarro X, Goetz FC, et al. Effects of pancreatic transplantation on diabetic neuropathy. N Engl J Med. 1990;322:1031–7.

    Article  CAS  PubMed  Google Scholar 

  76. Navarro X, Kennedy WR. Evaluation of thermal and pain sensitivity in type I diabetic patients. J Neurol Neurosurg Psychiatry. 1991;54:60–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Consensus Statement. Report and recommendations of the San Antonio Conference on diabetic neuropathy. Diabetes. 1988;37:1000–4.

    Article  Google Scholar 

  78. Kahn R. Proceedings of a consensus development conference on standardized measures in diabetic neuropathy. Diabetes Care. 1992;15:1080–107.

    Google Scholar 

  79. Solders G, Anderson T, Borin Y, et al. Electroneurography index: a standardized neurophysiological method to assess peripheral nerve function in patients with polyneuropathy. Muscle Nerve. 1993;16:941–6.

    Article  CAS  PubMed  Google Scholar 

  80. Dyck PJ. Detection, characterization, and staging of polyneuropathy: assessed in diabetics. Muscle Nerve. 1988;11:21–32.

    Article  CAS  PubMed  Google Scholar 

  81. Behse F, Buchthal F, Carlsen F. Nerve biopsy and conduction studies in diabetic neuropathy. J Neurol Neurosurg Psychiatry. 1977;40:1072–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dyck PJ, Karnes JL, Daube J, et al. Clinical and neuropathological criteria for the diagnosis and staging of diabetic polyneuropathy. Brain. 1985;108:861–80.

    Article  PubMed  Google Scholar 

  83. Claus D, Mustafa C, Vogel W, et al. Assessment of diabetic neuropathy: definition of norm and discrimination of abnormal nerve function. Muscle Nerve. 1993;16:757–68.

    Article  CAS  PubMed  Google Scholar 

  84. Ewing DJ, Martyn CN, Young RJ, et al. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8:491–8.

    Article  CAS  PubMed  Google Scholar 

  85. Sampson MJ, Wilson S, Karagiannis P, et al. Progression of diabetic autonomic neuropathy over a decade in insulin-dependent diabetics. Quart J Med. 1990;75:635–46.

    CAS  PubMed  Google Scholar 

  86. Van der Vliet JA, Navarro X, Kennedy WR, et al. Long term follow-up of polyneuropathy in diabetic kidney transplant recipients. Diabetes. 1988;37:1247–52.

    Article  PubMed  Google Scholar 

  87. Albers JW, Herman WH, Pop-Busui R, et al. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Diabetes Care. 2010;33:1090–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martin CL, Albers JW, Pop-Busui R, DCCT/EDIC Research Group. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37:31–8.

    Article  CAS  PubMed  Google Scholar 

  89. Dholakia S, Sharples EJ, Friend PJ. Impact of pancreas transplant on diabetic complications: retinopathy, gastroparesis and automatic dysregulation. Curr Transpl Rep. 2016;3:167–73.

    Article  Google Scholar 

  90. Van der Vliet JA, Navarro X, Kennedy WR, et al. The effect of pancreas transplantation on diabetic polyneuropathy. Transplantation. 1988;45:368–70.

    Article  PubMed  Google Scholar 

  91. Navarro X, Kennedy WR, Sutherland DER. Autonomic neuropathy and mortality in diabetic patients. Effects of a pancreas transplantation. Diabetologia. 1991;34:S108–12.

    Article  PubMed  Google Scholar 

  92. Vial C, Martin X, Lefrancois N, et al. Sequential electrodiagnostic evaluation of diabetic neuropathy after combined pancreatic and renal transplantation. Diabetologia. 1991;34:S100–2.

    Article  PubMed  Google Scholar 

  93. Solders G, Tydén G, Persson A, et al. Improvement of nerve conduction in diabetic neuropathy. A follow-up study 4 yr after combined pancreatic and renal transplantation. Diabetes. 1992;41:946–51.

    Article  CAS  PubMed  Google Scholar 

  94. Müller-Felber W, Landgraf R, Sheuer R, et al. Diabetic neuropathy 3 years after successful pancreas and kidney transplantation. Diabetes. 1993;42:1482–6.

    Article  PubMed  Google Scholar 

  95. Trojaborg W, Smith T, Jakobsen J, et al. Effect of pancreas and kidney transplantation on the neuropathic profile in insulin-dependent diabetes with end-stage nephropathy. Acta Neurol Scand. 1994;90:5–9.

    Article  CAS  PubMed  Google Scholar 

  96. Martinenghi S, Comi G, Galardi G, et al. Amelioration of nerve conduction velocity following simultaneous kidney/pancreas transplantation is due to the glycaemic control provided by the pancreas. Diabetologia. 1997;40:1110–2.

    Article  CAS  PubMed  Google Scholar 

  97. Remuzzi G, Ruggenenti P, Mauer SM. Pancreas and kidney/pancreas transplants: experimental medicine or real improvement? Lancet. 1994;343:27–31.

    Article  CAS  PubMed  Google Scholar 

  98. Krendel DA, Costigan DA, Hopkins LC. Successful treatment of neuropathy in patients with diabetes mellitus. Arch Neurol. 1995;52:1053–61.

    Article  CAS  PubMed  Google Scholar 

  99. Navarro X, Kennedy WR. Benefit of pancreatic transplantation on diabetic neuropathy. Euglycemia or immunosuppression? Ann Neurol. 1998;44:149–50.

    Article  Google Scholar 

  100. Najarian JS, Kaufman DB, Fryd DS, et al. Long-term survival following kidney transplantation in 100 type I diabetic patients. Transplantation. 1989;7:106–13.

    Article  Google Scholar 

  101. Sutherland DER, Kendall DM, Moudry KC, et al. Pancreas transplantation in nonuremic, type I diabetic recipients. Surgery. 1988;104:453–64.

    CAS  PubMed  Google Scholar 

  102. Laftavi MRA, Chapuis F, Vial C, et al. Diabetic polyneuropathy outcome after successful pancreas transplantation: 1 to 9 year follow up. Transplant Proc. 1994;27:1406–9.

    Google Scholar 

  103. Solders G, Tydén G, Tibell A, et al. Improvement in nerve conduction 8 years after combined pancreatic and renal transplantation. Transplant Proc. 1995;27:3091.

    CAS  PubMed  Google Scholar 

  104. Allen RDM, Al-Harbi IS, Morris JGL, et al. Diabetic neuropathy after pancreas transplantation: determinants of recovery. Transplantation. 1997;63:830–8.

    Article  CAS  PubMed  Google Scholar 

  105. Tydén G, Bolinder J, Solders G, et al. Improved survival in patients with insulin-dependent diabetes mellitus and end-stage diabetic nephropathy 10 years after combined pancreas and kidney transplantation. Transplantation. 1999;67:645–8.

    Article  PubMed  Google Scholar 

  106. Sutherland DER, Goetz FC, Najarian JS. Pancreas transplantation at the University of Minnesota: donor and recipient selection, operative and postoperative management, and outcome. Transplant Proc. 1987;19(Suppl 4):63–74.

    CAS  PubMed  Google Scholar 

  107. Gruessner RWG, Sutherland DER, Najarian JS, et al. Solitary pancreas transplantation for nonuremic patients with labile insulin-dependent diabetes mellitus. Transplantation. 1997;64:1572–7.

    Article  CAS  PubMed  Google Scholar 

  108. Navarro X, Kennedy WR, Aeppli D, et al. Neuropathy and mortality in diabetes: influence of pancreas transplantation. Muscle Nerve. 1996;19:1009–16.

    Article  CAS  PubMed  Google Scholar 

  109. Boucek P, Saudek F, Adamec M, et al. Spectral analysis of heart rate variation following simultaneous pancreas and kidney transplantation. Transplant Proc. 2003;35:1494–8.

    Article  CAS  PubMed  Google Scholar 

  110. Azmi S, Jeziorska M, Ferdousi M, et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia. 2019;62:1478–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Argente-Pla M, Pérez-Lázaro A, Martinez-Millana A, et al. Simultaneous pancreas kidney transplantation improves cardiovascular autonomic neuropathy with improved Valsalva ratio as the most precocious test. J Diabetes Res. 2020;2020:7574628.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Havrdova T, Boucek P, Saudek F, et al. Severe epidermal nerve fiber loss in diabetic neuropathy is not reversed by long-term normoglycemia after simultaneous pancreas and kidney transplantation. Am J Transplant. 2016;16:2196–201.

    Article  CAS  PubMed  Google Scholar 

  113. Beggs JL, Johnson PC, Olafsen AG, et al. Signs of nerve regeneration and repair following pancreas transplantation in an insulin-dependent diabetic with neuropathy. Clin Transpl. 1990;4:133–41.

    Google Scholar 

  114. Kennedy WR, Wendelschafer-Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology. 1996;47:1042–8.

    Article  CAS  PubMed  Google Scholar 

  115. Navarro X, Kennedy WR. Neuropathy. In: Gruessner RWG, Sutherland DER, editors. Transplantation of the pancreas. New York: Springer; 2005.

    Google Scholar 

  116. Gross CR, Zehrer CL. Health-related quality of life outcomes of pancreas transplant recipients. Clin Transpl. 1992;6:165–71.

    CAS  Google Scholar 

  117. Nakache R, Tyden G, Groth CG. Long-term quality of life in diabetic patients after combined pancreas-kidney transplantation or kidney transplantation. Transplant Proc. 1994;26:510–1.

    CAS  PubMed  Google Scholar 

  118. Hathaway DK, Abell T, Cardoso S, et al. Improvement in autonomic and gastric function following pancreas-kidney versus kidney-alone transplantation and the correlation with quality of life. Transplantation. 1994;57:816–22.

    Article  CAS  PubMed  Google Scholar 

  119. Martins LS, Outerelo C, Malheiro J, et al. Health-related quality of life may improve after transplantation in pancreas-kidney recipients. Clin Transpl. 2015;29:242–51.

    Article  Google Scholar 

  120. Gibbons A, Cinnirella M, Bayfield J, et al. Changes in quality of life, health status and other patient-reported outcomes following simultaneous pancreas and kidney transplantation (SPKT): a quantitative and qualitative analysis within a UK-wide programme. Transpl Int. 2020;33:1230–43.

    Article  PubMed  Google Scholar 

  121. Ewing DJ, Campbell IW, Clarke BF. Mortality in diabetic autonomic neuropathy. Lancet. 1976;1:601–3.

    Article  CAS  PubMed  Google Scholar 

  122. O’Brien IA, McFadden JP, Corrall RJM. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Quart J Med. 1991;79:495–502.

    PubMed  Google Scholar 

  123. Stephenson JM, Fuller JH. Microalbuminuria is not rare before 5 years of IDDM. EURODIAB IDDM Complications Study Group and the WHO Multinational Study of Vascular Disease in Diabetes Study Group. J Diabet Complications. 1994;8:166–73.

    Article  CAS  Google Scholar 

  124. Navarro X, Kennedy WR, Loewensen RB, et al. Influence of pancreas transplantation on cardiorespiratory reflexes, nerve conduction, and mortality in diabetes mellitus. Diabetes. 1990;39:802–6.

    Article  CAS  PubMed  Google Scholar 

  125. Becker BN, Brazy PC, Becker YT, et al. Simultaneous pancreas-kidney transplantation reduces excess mortality in type I diabetic patients with end-stage renal disease. Kidney Int. 2000;57:2129–35.

    Article  CAS  PubMed  Google Scholar 

  126. Klein R, Moss SE, Klein BEK, et al. Relation of ocular and systemic factors to survival in diabetes. Arch Intern Med. 1989;149:266–72.

    Article  CAS  PubMed  Google Scholar 

  127. Sundkvist G, Lilja B. Autonomic neuropathy predicts deterioration in glomerular filtration rate in patients with IDDM. Diabetes Care. 1993;16:773–9.

    Article  CAS  PubMed  Google Scholar 

  128. Morel P, Gillingham KJ, Moudry-Munns KC, et al. Factors influencing pancreas transplant outcome: Cox proportional hazard regression analysis of a single institution’s experience with 357 cases. Transplant Proc. 1991;23:1630–3.

    CAS  PubMed  Google Scholar 

  129. van Dellen D, Worthington J, Mitu-Pretorian OM, et al. Mortality in diabetes: pancreas transplantation is associated with significant survival benefit. Nephrol Dial Transplant. 2013;28:1315–22.

    Article  PubMed  Google Scholar 

  130. Ito T, Kenmochi T, Aida N, et al. Impact of pancreas transplantation on the patient survival - an analysis of the Japanese Pancreas Transplants Registry. J Clin Med. 2020;9:2134.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navarro, X., Kennedy, W.R. (2023). Neuropathy. In: Gruessner, R.W.G., Gruessner, A.C. (eds) Transplantation of the Pancreas. Springer, Cham. https://doi.org/10.1007/978-3-031-20999-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20999-4_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20998-7

  • Online ISBN: 978-3-031-20999-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics