Skip to main content

Modelling of Resource-Aware Information Flows for Resource Constraint IoT Devices

  • Conference paper
  • First Online:
Internet of Things (GIoTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13533))

Included in the following conference series:

  • 675 Accesses

Abstract

The Internet of Things (IoT) is the enabler for new innovations in several domains. It allows the connection of digital services with real, physical entities. These entities are devices of different categories and range in size from large machinery to tiny sensors. In the latter case, devices are typically characterized by limited resources in terms of computational power, available memory and sometimes limited power supply. As a consequence, the use of security algorithms requires expert knowledge in order for them to work within the limited resources. That means to find a suitable configuration for the algorithms to perform properly on the device. On the other side, there is the desire to protect valuable assets as strong as possible. Usually, security goals are captured in security policies, but they do not consider resource availability on the involved device and their consumption while executing security algorithms. This paper presents a resource aware information exchange model and a generation tool that uses high-level security policies as input. The model forms the conceptual basis for an automated security configuration recommendation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/.

References

  1. Zhang, Z.-K., Cho, M.C.Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: IoT security: ongoing challenges and research opportunities. In: IEEE 7th International Conference on Service-Oriented Computing and Applications, pp. 230–234 IEEE (2014)

    Google Scholar 

  2. Pearson, B., et al.: On misconception of hardware and cost in IoT security and privacy. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–7, ISSN: 1938–1883

    Google Scholar 

  3. Kietzmann, P., Boeckmann, L., Lanzieri, L., Schmidt, T.C., Wählisch, M.: a performance study of crypto-hardware in the low-end IoT. In: Proceedings of the 2021 International Conference on Embedded Wireless Systems and Networks, ser. EWSN ’21. Junction Publishing, pp. 79–90

    Google Scholar 

  4. Munoz, P.S., Tran, N., Craig, B., Dezfouli, B., Liu, Y.: Analyzing the resource utilization of AES encryption on IoT devices. In: 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1200–1207 ISSN: 2640–0103

    Google Scholar 

  5. Dhanda, S.S., Singh, B., Jindal, P.: Lightweight cryptography: a solution to secure IoT. Wireless Pers. Commun. 112(3), 1947–1980 (2020). https://doi.org/10.1007/s11277-020-07134-3

    Article  Google Scholar 

  6. Dutta, I.K., Ghosh, B., Bayoumi, M.: Lightweight cryptography for internet of insecure things: a survey. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0475–0481 (2019)

    Google Scholar 

  7. Gunathilake, N. A., Buchanan, W.J., Asif, R.: Next generation lightweight cryptography for smart IoT devices Implementation, challenges and applications. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 707–710 (2019)

    Google Scholar 

  8. Tsai, K.-L., Huang, Y.-L., Leu, F.-Y., You, I., Huang, Y.-L. Tsai, C.-H.: AES-128 based secure low power communication for Lora WAN IoT Environments. IEEE Access 6, 45325–45334 (2018)

    Google Scholar 

  9. Batina, L.: Dietary recommendations for lightweight block ciphers: power, energy and area analysis of recently developed architectures. In: Hutter, M., Schmidt, J.-M. (eds.) RFIDSec 2013. LNCS, vol. 8262, pp. 103–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41332-2_7

    Chapter  Google Scholar 

  10. Hsu, R.-H., Lee, J., Quek, T.Q.S., Chen, J.-C.: Reconfigurable security: edge-computing-based framework for IoT. In: Conference Name: IEEE Network vol.32 (5), pp. 92–99

    Google Scholar 

  11. Sha, K., Yang, T.A., Wei, W., Davari, S.: A survey of edge computing-based designs for IoT security, 6(2), pp. 195–202. https://www.sciencedirect.com/science/article/pii/S2352864818303018

  12. Safa, N.S., Maple, C., Haghparast, M., Watson, T., Dianati, M.: An opportunistic resource management model to overcome resource-constraint in the Internet of Things, 31(8), pp. e5014, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5014. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5014

  13. Green, M., et al.: Outsourcing the decryption of ABE ciphertexts. In: USENIX Security Symposium, pp. 34-34 (2011)

    Google Scholar 

  14. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manzoor, A., Liyanage, M., Braeke, A., Kanhere, S.S., Ylianttila, M.: Blockchain based proxy re-encryption scheme for secure IoT data sharing. IEEE Int. Conf. Blockchain Cryptocurrency (ICBC) 2019, 99–103 (2019)

    Google Scholar 

  16. Khashan, O. A.: Hybrid lightweight proxy re-encryption scheme for secure Fog-to-Things Environment. IEEE Access 8, 878–887 (2020)

    Google Scholar 

  17. Suksomboon, K. Tagami, A., Basu, A., Kurihara, J.: In-device proxy re-encryption service for information-centric networking access control. In: 2018 IEEE 43rd Conference on Local Computer Networks (LCN), pp. 303–306 (2018)

    Google Scholar 

  18. Patz, G., Condell, M., Krishnan, R., Sanchez, L.: Multidimensional security policy management for dynamic coalitions, In: Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX’01, vol. 2, pp. 41–54

    Google Scholar 

  19. Vallini, M.: Fp7 project secured deliverable d4.1 policy specification (2015)

    Google Scholar 

  20. Zarca, A.M., Bernabé, J.B., Ortíz, J., Skarmeta, A.: H2020 project Anastacia deliverable d2.5 policy-based definition and policy for orchestration final report. (2018)

    Google Scholar 

  21. ANASTACIA Project - advanced networked agents for security and trust assessment in CPS / IOT architectures. http://www.anastacia-h2020.eu/

  22. AANASTACIA Project - GitLab repsitory. https://gitlab.com/anastacia-project

  23. Zarour, K., Benmerzoug, D., Guermouche, N., Drira, K.: A systematic literature review on BPMN extensions, publisher: Emerald Publishing Limited. https://www.emerald.com/insight/content/DOI/10.1108/BPMJ-01-2019-0040/full/html

  24. Chergui, M.E.A., Benslimane, S.M.: A valid BPMN extension for supporting security requirements based on cyber security ontology. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D., Ordonez, C. (eds.) MEDI 2018. LNCS, vol. 11163, pp. 219–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00856-7_14

    Chapter  Google Scholar 

  25. Bocciarelli, p., D’Ambrogio, A., Giglio, A., Paglia, E.: A BPMN extension to enable the explicit modeling of task resources

    Google Scholar 

  26. Bocciarelli, p., D’Ambrogio, A., Giglio, A., Paglia, E.: A BPMN extension for modeling cyber-physical-production-systems in the context of industry 4.0, In: IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), pp. 599–604 (2017)

    Google Scholar 

  27. Sang., K. S. Zhou, B.: BPMN security extensions for healthcare process. In: IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 2340–2345 (2015 )

    Google Scholar 

  28. Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and verifying security policies in business processes. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS/EMMSAD -2014. LNBIP, vol. 175, pp. 200–214. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43745-2_14

    Chapter  Google Scholar 

  29. BPMN-JS - BPMN 2.0 for the web, original-date: 2014–03-10T12:57:00Z. https://github.com/bpmn-io/bpmn-js

Download references

Acknowledgement

This work is part of the research project “I4sec - Sichere Maschinenkommunikation und Fernwartung von Sensoren in der Produktion”, funded by the Federal Ministry of Education and Research of Germany (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischer, M., Tönjes, R. (2022). Modelling of Resource-Aware Information Flows for Resource Constraint IoT Devices. In: González-Vidal, A., Mohamed Abdelgawad, A., Sabir, E., Ziegler, S., Ladid, L. (eds) Internet of Things. GIoTS 2022. Lecture Notes in Computer Science, vol 13533. Springer, Cham. https://doi.org/10.1007/978-3-031-20936-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20936-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20935-2

  • Online ISBN: 978-3-031-20936-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics