Skip to main content

Abstract

Agricultural growth needs a newer policy that speeds up plant growth and the nutritional value of the crops. Numerous agrochemicals, pesticides, and fertilizers provide nutrients to crops and enhance plant growth and nutrition quality. However, the demand for food remains a concern. In this context, 2D-nanomaterials or nanosheets have the potential ability to overcome issues associated with agrochemicals. 2D-nanosheets easily penetrate the seed coats and translocate with the plants using apoplastic and symplastic pathways. The high translocation ability regulates various molecular and biochemical pathways, thereby improving plant growth and development. However, a higher dose of the 2D-nanosheets shows the phytotoxic effects by increasing the production of reactive oxygen species. In this context, 2D-nanosheets-based hybrid materials might be beneficial for improved plant growth with minimal phytotoxicity. Moreover, 2D-nanosheets-based hybrid materials also protect crops against various pathogenic microorganisms. This book chapter focuses on synthesizing 2D-nanosheets, 2D-nanosheets-based hybrid materials, and their interaction with the plants. We also discuss the effect of 2D-nanosheets and 2D-nanosheet-based hybrid materials for plant growth and the protection of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afreen S, Omar RA, Talreja N, Chauhan D, Ashfaq M (2018) Carbon-based nanostructured materials for energy and environmental remediation applications. In: Prasad R, Aranda E (eds) Approaches in bioremediation: the new era of environmental microbiology and nanobiotechnology. Springer International Publishing, Cham

    Google Scholar 

  • Afreen S, Omar RA, Talreja N, Chauhan D, Mangalaraja RV, Ashfaq M (2022a) Chapter 15—Nanostructured materials based on copper/carbon as a plant growth stimulant. In: Abd-Elsalam KA (ed) Copper nanostructures: next-generation of agrochemicals for sustainable agroecosystems. Elsevier

    Google Scholar 

  • Afreen S, Talreja N, Ashfaq M, Chauhan D (2022b). Chapter 11—Carbon nanostructure-based sensor: a promising tools for monitoring crops. In: Balestra GM, Fortunati E (eds) Nanotechnology-based sustainable alternatives for the management of plant diseases. Elsevier.

    Google Scholar 

  • Aïssa B, Memon NK, Ali A, Khraisheh MK (2015) Recent progress in the growth and applications of graphene as a smart material: a review. Front Mater 2

    Google Scholar 

  • Ashfaq M, Khan S (2017) Role of phytohormones in improving the yield of oilseed crops. In: Ahmad P (ed) Oilseed crops. https://doi.org/10.1002/9781119048800.ch9

  • Ashfaq M, Khan S, Verma N (2014) Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochem Eng J 90:79–89

    CAS  Google Scholar 

  • Ashfaq M, Singh S, Sharma A, Verma N (2013) Cytotoxic evaluation of the hierarchical web of carbon micronanofibers. Ind Eng Chem Res 52:4672–4682

    CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2016) Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Mater Sci Eng C 59:938–947

    CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017a) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148

    CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017b) Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. Mater Sci Eng, C 77:630–641

    CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2018) Novel polymeric composite grafted with metal nanoparticle-dispersed CNFs as a chemiresistive non-destructive fruit sensor material. Mater Chem Phys 217:216–227

    CAS  Google Scholar 

  • Ashfaq M, Talreja N, Chauhan D, Rodríguez CA, Mera AC, Mangalaraja RV (2021) A novel bimetallic (Fe/Bi)-povidone-iodine micro-flowers composite for photocatalytic and antibacterial applications. J Photochem Photobiol B 219:112204

    CAS  PubMed  Google Scholar 

  • Ashfaq M, Talreja N, Chauhan D, Rodríguez CA, Mera AC, Ramalinga Viswanathan M (2022) Synthesis of reduced graphene oxide incorporated bimetallic (Cu/Bi) nanorods based photocatalyst materials for the degradation of gallic acid and bacteria. J Ind Eng Chem

    Google Scholar 

  • Bhadauriya P, Mamtani H, Ashfaq M, Raghav A, Teotia AK, Kumar A, Verma N (2018) Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: simultaneous control of glucose and bacterial infections. ACS Appl Bio Mater 1:246–258

    CAS  PubMed  Google Scholar 

  • Cai M, Thorpe D, Adamson DH, Schniepp HC (2012) Methods of graphite exfoliation. J Mater Chem 22:24992–25002

    CAS  Google Scholar 

  • Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM (2021) A review on the applications of graphene in mechanical transduction. Adv Mater n/a, 2101326.

    Google Scholar 

  • Chauhan D, Afreen S, Talreja N, Ashfaq M (2020) Chapter 8—Multifunctional copper polymer-based nanocomposite for environmental and agricultural applications. In: Abd-Elsalam KA (ed) Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems. Elsevier.

    Google Scholar 

  • Chen J, Sun L, Cheng Y, Lu Z, Shao K, Li T, Hu C, Han H (2016) Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against fusarium graminearum for crop disease prevention. ACS Appl Mater Interfaces 8:24057–24070

    CAS  PubMed  Google Scholar 

  • Chen J, Zhao X, Tan SJR, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum TC, Loh KP (2017) Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J Am Chem Soc 139:1073–1076

    CAS  PubMed  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials (basel, Switzerland) 5:851–873

    PubMed  Google Scholar 

  • Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71

    CAS  Google Scholar 

  • Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Pérez-De-luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26

    Google Scholar 

  • Dhinakaran V, Lavanya M, Vigneswari K, Ravichandran M, Vijayakumar MD (2020) Review on exploration of graphene in diverse applications and its future horizon. Mater Today Proc 27:824–828

    CAS  Google Scholar 

  • El-Abeid SE, Ahmed Y, Daròs J-A, Mohamed MA (2020) Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: a potent antifungal nanocomposite against fusarium root rot and wilt diseases of tomato and pepper plants. Nanomaterials (basel, Switzerland) 10:1001

    CAS  PubMed  Google Scholar 

  • El Miri N, El Achaby M, Fihri A, Larzek M, Zahouily M, Abdelouahdi K, Barakat A, Solhy A (2016) Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohyd Polym 137:239–248

    Google Scholar 

  • Facure MHM, Mercante LA, Mattoso LHC, Correa DS (2017) Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 167:59–66

    CAS  PubMed  Google Scholar 

  • Fu Q, Wang W, Yang L, Huang J, Zhang J, Xiang B (2015) Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv 5:15795–15799

    CAS  Google Scholar 

  • Han SA, Bhatia R, Kim S-W (2015) Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence 2:17

    Google Scholar 

  • He Y, Hu R, Zhong Y, Zhao X, Chen Q, Zhu H (2018) Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res 11:1928–1937

    CAS  Google Scholar 

  • Hu X, Zhou Q (2014) Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4:3782

    PubMed  PubMed Central  Google Scholar 

  • Huang Y, Li L, Lin Y-H, Nan C-W (2017) Liquid exfoliation few-layer SnSe nanosheets with tunable band gap. J Phys Chem C 121:17530–17537

    CAS  Google Scholar 

  • Huang C, Xia T, Niu J, Yang Y, Lin S, Wang X, Yang G, Mao L, Xing B (2018) Transformation of 14C-labeled graphene to 14CO2 in the shoots of a rice plant. Angew Chem Int Ed 57:9759–9763

    CAS  Google Scholar 

  • Huo C, Yan Z, Song X, Zeng H (2015) 2D materials via liquid exfoliation: a review on fabrication and applications. Sci Bull 60:1994–2008

    CAS  Google Scholar 

  • Irsad Talreja N, Chauhan D, Rodríguez CA, Mera AC, Ashfaq M (2020) Nanocarriers: an emerging tool for micronutrient delivery in plants. In: Aftab T, Hakeem KR (eds) Plant micronutrients: deficiency and toxicity management. Springer International Publishing, Cham

    Google Scholar 

  • Ismail Z (2019) Green reduction of graphene oxide by plant extracts: A short review. Ceram Int 45, 23857–23868

    Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khare P, Talreja N, Deva D, Sharma A, Verma N (2013) Carbon nanofibers containing metal-doped porous carbon beads for environmental remediation applications. Chem Eng J 229:72–81

    CAS  Google Scholar 

  • Kumar D, Talreja N (2019) Nickel nanoparticles-doped rhodamine grafted carbon nanofibers as colorimetric probe: Naked eye detection and highly sensitive measurement of aqueous Cr3+ and Pb2+. Korean J Chem Eng 36:126–135

    CAS  Google Scholar 

  • Kumar V, Talreja N, Deva D, Sankararamakrishnan N, Sharma A, Verma N (2011) Development of bi-metal doped micro- and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater. Desalination 282:27–38

    CAS  Google Scholar 

  • Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53:7150–7164

    CAS  Google Scholar 

  • Lee JY, Kim MJ, Chung H (2021) Effects of graphene oxide on germination and early growth of plants. J Nanosci Nanotechnol 21:5282–5288

    CAS  PubMed  Google Scholar 

  • Li G, Zhao H, Hong J, Quan K, Yuan Q, Wang X (2017) Antifungal graphene oxide-borneol composite. Colloids Surf B 160:220–227

    CAS  Google Scholar 

  • Li J, Wang J, Zhang Y, Wang H, Lin G, Xiong X, Zhou W, Luo H, Li D (2018) Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Mater 5, 021001

    Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    CAS  PubMed  Google Scholar 

  • Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed 6:2963–2979

    CAS  Google Scholar 

  • Mahmoud NE, Abdelhameed RM (2021) Superiority of modified graphene oxide for enhancing the growth, yield, and antioxidant potential of pearl millet (Pennisetum glaucum L.) under salt stress. Plant Stress 2, 100025

    Google Scholar 

  • Mbayachi VB, Ndayiragije E, Sammani T, Taj S, Mbuta ER, Khan AU (2021) Graphene synthesis, characterization and its applications: A review. Results Chem 3:100163

    CAS  Google Scholar 

  • Mustafa S, Khan HM, Shukla I, Shujatullah F, Shahid M, Ashfaq M, Azam A (2011) Effect of ZnO nanoparticles on ESBL producing Escherichia coli & Klebsiella spp. Eastern J Med 16:253–257

    Google Scholar 

  • Nag A, Mitra A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: A review. Sens Actuators A 270:177–194

    CAS  Google Scholar 

  • Nokandeh S, Ramezani M, Gerami M (2021) The physiological and biochemical responses to engineered green graphene/metal nanocomposites in Stevia rebaudiana. J Plant Biochem Biotechnol 30:579–585

    CAS  Google Scholar 

  • Okada M, Okada N, Chang W-H, Endo T, Ando A, Shimizu T, Kubo T, Miyata Y, Irisawa T (2019) Gas-source CVD growth of atomic layered WS2 from WF6 and H2S precursors with high grain size uniformity. Sci Rep 9:17678

    PubMed  PubMed Central  Google Scholar 

  • Omar RA, Afreen S, Talreja N, Chauhan D, Ashfaq M (2019a) Impact of nanomaterials in plant systems. In: Prasad R (ed) Plant nanobionics: Volume 1, Advances in the understanding of nanomaterials research and applications. Springer International Publishing, Cham

    Google Scholar 

  • Omar RA, Afreen S, Talreja N, Chauhan D, Ashfaq M, Srituravanich W (2019b) Impact of nanomaterials on the microbial system. In Prasad R (ed) Microbial nanobionics: Volume 1, State-of-the-art. Springer International Publishing, Cham

    Google Scholar 

  • Park S, Choi KS, Kim S, Gwon Y, Kim J (2020) Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials 10

    Google Scholar 

  • Pérez-De-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5

    Google Scholar 

  • Rashidi Nodeh H, Sereshti H, Gaikani H, Kamboh MA, Afsharsaveh Z (2017) Magnetic graphene coated inorganic-organic hybrid nanocomposite for enhanced preconcentration of selected pesticides in tomato and grape. J Chromatogr A 1509, 26–34

    Google Scholar 

  • Ren W, Chang H, Teng Y (2016) Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings. Sci Total Environ 572:926–934

    CAS  PubMed  Google Scholar 

  • Salim MH, Kassab Z, Kassem I, Sehaqui H, Bouhfid R, Jacquemin J, Qaiss AEK, Alami J, El Achaby M (2021) Hybrid nanocomposites based on graphene with cellulose nanocrystals/nanofibrils: from preparation to applications. In: Qaiss AEK, Bouhfid R, Jawaid M (eds) Graphene and nanoparticles hybrid nanocomposites: from preparation to applications. Springer Singapore, Singapore

    Google Scholar 

  • Sampathkumar K, Tan KX, Loo SCJ (2020) Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. iScience 23, 101055

    Google Scholar 

  • Sanzari I, Leone A, Ambrosone A (2019a) Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol 7

    Google Scholar 

  • Sanzari I, Leone A, Ambrosone A (2019b) Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol 7:120–120

    PubMed  PubMed Central  Google Scholar 

  • Saraswat R, Talreja N, Deva D, Sankararamakrishnan N, Sharma A, Verma N (2012) Development of novel in situ nickel-doped, phenolic resin-based micro–nano-activated carbon adsorbents for the removal of vitamin B-12. Chem Eng J 197:250–260

    CAS  Google Scholar 

  • Sasidharan V, Sachan D, Chauhan D, Talreja N, Ashfaq M (2021) Three-dimensional (3D) polymer—metal–carbon framework for efficient removal of chemical and biological contaminants. Sci Rep 11:7708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seravalli L, Bosi M (2021) A review on chemical vapour deposition of two-dimensional MoS2 flakes. Materials 14

    Google Scholar 

  • Sikder A, Pearce AK, Parkinson SJ, Napier R, O’Reilly RK (2021) Recent trends in advanced polymer materials in agriculture related applications. ACS Appl Polymer Mater 3:1203–1217

    CAS  Google Scholar 

  • Singh S, Ashfaq M, Singh RK, Joshi HC, Srivastava A, Sharma A, Verma N (2013) Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnol 30:656–665

    CAS  Google Scholar 

  • Soraki RK, Gerami M, Ramezani M (2021) Effect of graphene/metal nanocomposites on the key genes involved in rosmarinic acid biosynthesis pathway and its accumulation in Melissa officinalis. BMC Plant Biol 21:260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spielman-Sun E, Avellan A, Bland GD, Tappero RV, Acerbo AS, Unrine JM, Giraldo JP, Lowry GV (2019) Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ Sci Nano 6:2508–2519

    CAS  Google Scholar 

  • Su Y, Ashworth V, Kim C, Adeleye AS, Rolshausen P, Roper C, White J, Jassby D (2019) Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ Sci Nano 6:2311–2331

    CAS  Google Scholar 

  • Sultana A, Talreja N, Chauhan D, Ashfaq M (2021) Chapter 4—Nanotechnology-based biofortification: a plant–soil interaction modulator/enhancer. In: Aftab T, Hakeem KR (eds) Frontiers in plant-soil interaction. Academic Press

    Google Scholar 

  • Sultana A, Omar RA, Talreja N, Chauhan D, Mangalaraja RV, Ashfaq M (2022) Chapter 28—Copper-based metal-organic framework for environmental applications. In: Abd-Elsalam KA (ed) Copper nanostructures: next-generation of agrochemicals for sustainable agroecosystems. Elsevier

    Google Scholar 

  • Sun Z, Talreja N, Tao H, Texter J, Muhler M, Strunk J, Chen J (2018) Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew Chem Int Ed 57:7610–7627

    CAS  Google Scholar 

  • Talreja N, Kumar D, Verma N (2014) Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. J Water Process Eng 3:34–45

    Google Scholar 

  • Talreja N, Verma N, Kumar D (2016) Carbon bead-supported ethylene diamine-functionalized carbon nanofibers: an efficient adsorbent for salicylic acid. Clean: Soil, Air, Water 44:1461–1470

    CAS  Google Scholar 

  • Talreja N, Kumar D (2018) Engineered nanoparticles’ toxicity: environmental aspects. Nanotechnol Environ Sci

    Google Scholar 

  • Tao H, Gao Y, Talreja N, Guo F, Texter J, Yan C, Sun Z (2017) Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J Mater Chem A 5:7257–7284

    CAS  Google Scholar 

  • Wang Q, Li C, Wang Y, Que X (2019) Phytotoxicity of graphene family nanomaterials and its mechanisms: a review. Front Chem 7

    Google Scholar 

  • Xie L, Chen F, Du H, Zhang X, Wang X, Yao G, Xu B (2020) Graphene oxide and indole-3-acetic acid cotreatment regulates the root growth of Brassica napus L. via multiple phytohormone pathways. BMC Plant Biol 20, 101

    Google Scholar 

  • Yan C, Gan L, Zhou X, Guo J, Huang W, Huang J, Jin B, Xiong J, Zhai T, Li Y (2017) Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv Func Mater 27:1702918

    Google Scholar 

  • Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao Z, Ou JZ (2020) Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett 12:66

    CAS  Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113

    CAS  Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17:78

    CAS  Google Scholar 

  • Zhang P, Zhang R, Fang X, Song T, Cai X, Liu H, Du S (2016) Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short- and long-term exposure studies. J Hazard Mater 317:543–551

    CAS  PubMed  Google Scholar 

  • Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469

    Google Scholar 

  • Zheng W, Zhao X, Fu W (2021) Review of vertical graphene and its applications. ACS Appl Mater Interfaces 13:9561–9579

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by Agencia National de Investigacion y Dessarrolo (ANID) through FONDECYT project No. 3190515 and 3190581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Talreja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, D., Ashfaq, M., Mangalaraja, R.V., Talreja, N. (2023). 2D-Nanosheets Based Hybrid Nanomaterials Interaction with Plants. In: Al-Khayri, J.M., Alnaddaf, L.M., Jain, S.M. (eds) Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications. Springer, Cham. https://doi.org/10.1007/978-3-031-20878-2_11

Download citation

Publish with us

Policies and ethics