Skip to main content

PLAE: Time-Series Prediction Improvement by Adaptive Decomposition

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Abstract

Univariate time-series forecasting is a kind of commonly encountered yet tough problem. Most of the forecast algorithms’ performance is constrained by the limited information due to the single input dimension. No matter how capable a forecast algorithm is, an accurate output cannot be rendered on an unpredictable time-series. This paper presents PLAE (Predictability Leveraging Auto-Encoder), a Seq2Seq model for univariate time-series data aiming to enhance the accuracy of the given algorithm without dimensional adaptation. The main idea is decomposing the original input data into a group of more predictable microscopic time-series on which the forecast algorithm can deliver a more accurate output. And the final prediction is rendered by aggregating those components back to the original one-dimension. Experiments on three public data sets and one real-world data set show that PLAE can improve the forecast accuracy for 23.38% in terms of MAPE and 19.76% in terms of RMSE. Besides, experimental evidence shows that PLAE’s adaptive non-linear decomposition mechanism outperforms the pre-defined additive decomposition w.r.t. both forecasting performance and components’ interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets/PEMS-SF.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.

  3. 3.

    https://robjhyndman.com/expsmooth/.

References

  1. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  2. Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS One 12(7), e0180944 (2017)

    Article  Google Scholar 

  3. Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional time series forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691 (2017)

  4. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  5. Chatfield, C.: The holt-winters forecasting procedure. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 27(3), 264–279 (1978)

    Google Scholar 

  6. Chen, K.Y., Wang, C.H.: A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan. Expert Syst. Appl. 32(1), 254–264 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  8. Chen, Y., Kang, Y., Chen, Y., Wang, Z.: Probabilistic forecasting with temporal convolutional neural network. Neurocomputing 399, 491–501 (2020)

    Article  Google Scholar 

  9. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition. J. Off. Stat 6(1), 3–73 (1990)

    Google Scholar 

  10. Du, S., Li, T., Horng, S.J.: Time series forecasting using sequence-to-sequence deep learning framework. In: 2018 9th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), pp. 171–176. IEEE (2018)

    Google Scholar 

  11. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1), 1–34 (2012)

    Article  MATH  Google Scholar 

  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  13. Gardner, E.S., Jr.: Exponential smoothing: the state of the art. J. Forecast. 4(1), 1–28 (1985)

    Article  Google Scholar 

  14. Garland, J., James, R., Bradley, E.: Model-free quantification of time-series predictability. Phys. Rev. E 90(5), 052910 (2014)

    Article  Google Scholar 

  15. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Google Scholar 

  16. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems 30, pp. 3146–3154 (2017)

    Google Scholar 

  17. Kontoyiannis, I., Algoet, P.H., Suhov, Y.M., Wyner, A.J.: Nonparametric entropy estimation for stationary processes and random fields, with applications to English text. IEEE Trans. Inf. Theory 44(3), 1319–1327 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, U., De Ridder, K.: GARCH modelling in association with FFT-ARIMA to forecast ozone episodes. Atmos. Environ. 44(34), 4252–4265 (2010)

    Article  Google Scholar 

  19. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: Advances in Neural Information Processing Systems 32, pp. 5243–5253 (2019)

    Google Scholar 

  20. Liao, M., Lyu, P., He, M., Yao, C., Bai, X.: Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 532–548 (2019)

    Article  Google Scholar 

  21. McLeod, A.I., Li, W.K.: Diagnostic checking ARMA time series models using squared-residual autocorrelations. J. Time Ser. Anal. 4(4), 269–273 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Molgedey, L., Ebeling, W.: Local order, entropy and predictability of financial time series. Eur. Phys. J. B Condens. Matter Complex Syst. 15(4), 733–737 (2000)

    Article  Google Scholar 

  23. Navet, N., Chen, S.H.: On predictability and profitability: would GP induced trading rules be sensitive to the observed entropy of time series? In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. SCI, vol. 100, pp. 197–210. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77477-8_11

    Chapter  Google Scholar 

  24. Pennekamp, F., et al.: The intrinsic predictability of ecological time series and its potential to guide forecasting. Ecol. Monogr. 89(2), e01359 (2019)

    Article  Google Scholar 

  25. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  26. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tang, Z., De Almeida, C., Fishwick, P.A.: Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation 57(5), 303–310 (1991)

    Google Scholar 

  28. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)

    Article  MathSciNet  Google Scholar 

  29. Teunter, R.H., Syntetos, A.A., Babai, M.Z.: Intermittent demand: linking forecasting to inventory obsolescence. Eur. J. Oper. Res. 214(3), 606–615 (2011)

    Article  Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  31. Wen, M., Li, P., Zhang, L., Chen, Y.: Stock market trend prediction using high-order information of time series. IEEE Access 7, 28299–28308 (2019)

    Article  Google Scholar 

  32. Xu, P., Yin, L., Yue, Z., Zhou, T.: On predictability of time series. Phys. A Stat. Mech. Appl. 523, 345–351 (2019)

    Article  Google Scholar 

  33. Yu, H.F., Rao, N., Dhillon, I.S.: Temporal regularized matrix factorization for high-dimensional time series prediction. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  34. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021)

    Google Scholar 

  35. Zhu, Z., et al.: MixSeq: connecting macroscopic time series forecasting with microscopic time series data. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jufang Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, J., Wang, Y., Zheng, W. (2022). PLAE: Time-Series Prediction Improvement by Adaptive Decomposition. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics