Skip to main content

Improvement of Vegetables Through Molecular Breeding in Changing Climate Scenario

  • Chapter
  • First Online:
Advances in Research on Vegetable Production Under a Changing Climate Vol. 2

Part of the book series: Advances in Olericulture ((ADOL))

  • 297 Accesses

Abstract

Vegetable crops have been cultivated since they were domesticated. These are the principal source of nutrients required in the growth and development of human beings. Rapid advances in the methods of next-generation sequencing technology and high throughput genotyping protocols have resulted in the collection and publication of reference genomes of major vegetable species. The large-scale genetic resource reorganization strategy has revealed the process of vegetable crops domestication and improvement of the essential traits through breeding procedures. The utilization of genetic mapping strategies and identification of quantitative trait locus has resulted in the exploration of significant molecular markers linked to essential traits in vegetables. Furthermore, the genome-based breeding approach is employed in most important vegetable crops families, such as Solanaceae and Brassicaceae, and allowing molecular selection at the single-base level. As a result, genome-wide molecular markers are extensively used for efficient genotyping in most vegetable crops. Molecular breeding has emerged as a key method for vegetables. Besides this, genome editing technology can dramatically increase vegetable breeding efficiency. This chapter examines the current scenario of genome-based molecular breeding tactics and genome editing approaches employed in significant vegetable crops to give insights into next-generation molecular breeding for a growing global population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30(2):174–178

    Article  CAS  Google Scholar 

  • Anithakumari AM, Nataraja KN, Visser RG, van der Linden CG (2012) Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol Breed 30(3):1413–1429

    Article  CAS  Google Scholar 

  • Ashraf U, Mahmood S, Shahid N, Imran M, Siddique M, Abrar M (2022) Multi-omics approaches for strategic improvements of crops under changing climatic conditions. In: Principles and practices of OMICS and genome editing for crop improvement. Springer, Cham, pp 57–92

    Chapter  Google Scholar 

  • Ballester AR, Molthoff J, de Vos R, Hekkert BTL, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152(1):71–84

    Article  CAS  Google Scholar 

  • Borovsky Y, Monsonego N, Mohan V, Shabtai S, Kamara I, Faigenboim A, Hill T, Chen S, Stoffel K, Van Deynze A, Paran I (2019) The zinc-finger transcription factor cc LOL 1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. The Plant J 99(1):41–55

    Article  CAS  Google Scholar 

  • Cao W, Du Y, Wang C, Xu L, Wu T (2018) Cscs encoding chorismate synthase is a candidate gene for leaf variegation mutation in cucumber. Breed Sci:18023

    Google Scholar 

  • Chaudhary J, Deshmukh R, Sonah H (2019) Mutagenesis approaches and their role in crop improvement. Plan Theory 8(11):467

    CAS  Google Scholar 

  • Chen F, Fu B, Pan Y, Zhang C, Wen H, Weng Y, Chen P, Li Y (2017b) Fine-mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber. TheorAppl Genet 130(8):1549–1558

    Article  CAS  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  Google Scholar 

  • Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ (2017a) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:2516

    Article  Google Scholar 

  • Cheng Q, Wang P, Liu J, Wu L, Zhang Z, Li T, Gao W, Yang W, Sun L, Shen H (2018) Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L. TheorAppl Genet 131(9):1861–1872

    Article  CAS  Google Scholar 

  • Cruz RV, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, Honda Y, Jafari M, Li C, Huu N (2007) Asia climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 469–506

    Google Scholar 

  • Dias JS, Ortiz R (2021) New strategies and approaches for improving vegetable cultivars. In: The basics of human civilization. CRC Press, pp 349–381

    Chapter  Google Scholar 

  • Dou J, Lu X, Ali A, Zhao S, Zhang L, He N, Liu W (2018b) Genetic mapping reveals a marker for yellow skin in watermelon (Citrulluslanatus L.). PLoS One 13(9):e0200617

    Article  Google Scholar 

  • Dou J, Zhao S, Lu X, He N, Zhang L, Ali A, Kuang H, Liu W (2018a) Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrulluslanatus L.). TheorAppl Genet 131(4):947–958

    Article  CAS  Google Scholar 

  • Fernandez-Moreno JP, Tzfadia O, Forment J, Presa S, Rogachev I, Meir S, Orzaez D, Aharoni A, Granell A (2016) Characterization of a new pink-fruited tomato mutant results in the identification of a null allele of the SlMYB12 transcription factor. Plant Physiol 171(3):1821–1836

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  CAS  Google Scholar 

  • Fu W, Ye X, Ren J, Li Q, Du J, Hou A, Mei F, Feng H, Liu Z (2019) Fine mapping of lcm1, a gene conferring chlorophyll-deficient golden leaf in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Breed 39(4):1–12

    Article  Google Scholar 

  • Gao M, Hu L, Li Y, Weng Y (2016a) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. TheorAppl Genet 129(10):1961–1197

    Article  CAS  Google Scholar 

  • Gao M, Hu L, Li Y, Weng Y (2016b) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. TheorAppl Genet 129(10):1961–1973

    Article  CAS  Google Scholar 

  • Garcia V, Bres C, Just D, Fernandez L, Tai FWJ, Mauxion JP, Le Paslier MC, Berard A, Brunel D, Aoki K, Alseekh S (2016) Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nat Protoc 11(12):2401–2418

    Article  CAS  Google Scholar 

  • Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in capsicum. Plant Biotechnol J 16(9):1546–1558

    Article  CAS  Google Scholar 

  • Hao N, Du Y, Li H, Wang C, Wang C, Gong S, Zhou S, Wu T (2018) CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumissativus L.). TheorAppl Genet 131(8):1659–1669

    Article  CAS  Google Scholar 

  • Hao N, Han D, Huang K, Du Y, Yang J, Zhang J, Wen C, Wu T (2020) Genome-based breeding approaches in major vegetable crops. TheorAppl Genet 133(5):1739–1752

    Article  Google Scholar 

  • Hsieh TH, Li CW, Su RC, Cheng CP, Tsai YC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231(6):1459–1473

    Article  CAS  Google Scholar 

  • Hu B (2017) Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 10(2):1575–1578

    Article  CAS  Google Scholar 

  • Huang Y, Cao H, Yang L, Chen C, Shabala L, Xiong M, Niu M, Liu J, Zheng Z, Zhou L, Peng Z (2019) Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. J Exp Bot 70(20):5879–5893

    Article  CAS  Google Scholar 

  • Hwang I, Kim Y, Han J, Nou IS (2016) Orange color is associated with CYC-B expression in tomato fleshy fruit. Mol Breed 36(4):42

    Article  Google Scholar 

  • Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. TheorAppl Genet 128(7):1329–1342

    Article  Google Scholar 

  • Jian W, Cao H, Yuan S, Liu Y, Lu J, Lu W, Li N, Wang J, Zou J, Tang N, Xu C (2019) SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hort Res 6(1):1–15

    CAS  Google Scholar 

  • Jiang M, Miao L, Zhang H, Zhu X (2020) Over-expression of a transcription factor gene BoC3H4 enhances salt stress tolerance but reduces Sclerotinia stem rot disease resistance in broccoli. J Plant Growth Regul 39(3):1162–1176

    Article  CAS  Google Scholar 

  • Jiang M, Ye ZH, Zhang HJ, Miao LX (2019) Broccoli plants over-expressing an ERF transcription factor gene BoERF1 facilitates both salt stress and sclerotinia stem rot resistance. J Plant Growth Regul 38(1):1–13

    Article  Google Scholar 

  • Khan MZ, Zaidi SSEA, Amin I, Mansoor S (2019) A CRISPR way for fast-forward crop domestication. Trends Plant Sci 24(4):293–296

    Article  CAS  Google Scholar 

  • Khar A, Singh H, Verma P (2022) Mitigating abiotic stresses in under changing climatic scenario. In: Genomic designing for abiotic stress resistant vegetable crops. Springer, Cham, pp 253–278

    Chapter  Google Scholar 

  • Lee YP, Cho Y, Kim S (2014) A high-resolution linkage map of the Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility in radish (Raphanussativus L.) produced by a combination of bulked segregant analysis and RNA-Seq. TheorAppl Genet 127(10):2243–2252

    Article  CAS  Google Scholar 

  • Li S, Pan Y, Wen C, Li Y, Liu X, Zhang X, Behera TK, Xing G, Weng Y (2016) Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber. TheorAppl Genet 129(5):1007–1022

    Article  Google Scholar 

  • Li S, Zhang L, Wang Y, Xu F, Liu M, Lin P, Ren S, Ma R, Guo YD (2017) Knockdown of a cellulose synthase gene BoiCesA affects the leaf anatomy, cellulose content and salt tolerance in broccoli. Sci Rep 7(1):1–14

    Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36(12):1160–1163

    Article  CAS  Google Scholar 

  • Li Y, Wen C, Weng Y (2013) Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. TheorAppl Genet 126(8):2187–2196

    Article  CAS  Google Scholar 

  • Liang D, Chen M, Qi X, Xu Q, Zhou F, Chen X (2016) QTL mapping by SLAF-seq and expression analysis of candidate genes for aphid resistance in cucumber. Front Plant Sci 7:1000

    Article  Google Scholar 

  • Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W, Sheng J, Shen L (2019a) Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J Agric Food Chem 67(22):6116–6124

    Article  CAS  Google Scholar 

  • Liu G, Mao S, Kim JH (2019b) A mature-tomato detection algorithm using machine learning and color analysis. Sensors 19(9):2023

    Article  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127(7):1491–1499

    Article  Google Scholar 

  • Lun Y, Wang X, Zhang C, Yang L, Gao D, Chen H, Huang S (2015) A CsYcf54 variant conferring light green coloration in cucumber. Euphytica 208(3):509–517

    Article  Google Scholar 

  • Maligeppagol M, Manjula R, Navale PM, Babu KP, Kumbar BM, Laxman RH (2016) Genetic transformation of chilli (Capsicum annuum L.) with Dreb1A transcription factor known to impart drought tolerance

    Google Scholar 

  • Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B, Nadimi M, Davidson J, Tonapi K, Yadav L, Malkaram S (2016) Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci Rep 6(1):1–14

    Article  Google Scholar 

  • Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Vajja VG, Malkaram S, Reddy R, Wehner TC, Mitchell SE (2014) Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics 15(1):1–15

    Article  Google Scholar 

  • Paudel L, Clevenger J, McGregor C (2019) Chromosomal locations and interactions of four loci associated with seed coat color in watermelon. Front Plant Sci 10:788

    Article  Google Scholar 

  • Pradhan K, Rout S, Tripathy B, Mishra UN, Sahoo G, Prusty AK, Dash L (2021) Role of biotechnology in vegetable breeding. Turkish Online J Qual Inq 12(3):5092–5102

    Google Scholar 

  • Ren J, Liu Z, Du J, Fu W, Hou A, Feng H (2019) Fine-mapping of a gene for the lobed leaf, BoLl, in ornamental kale (Brassica oleracea L. var. acephala). Mol Breed 39(3):1–14

    Article  Google Scholar 

  • Rodríguez GR, Kim HJ, Van Der Knaap E (2013) Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 111(3):256–264

    Article  Google Scholar 

  • Rong F, Chen F, Huang L, Zhang J, Zhang C, Hou D, Cheng Z, Weng Y, Chen P, Li Y (2019) A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumissativus L.). TheorAppl Genet 132(1):113–123

    Article  CAS  Google Scholar 

  • Roy R, Purty RS, Agrawal V, Gupta SC (2006) Transformation of tomato cultivar ‘PusaRuby’withbspA gene from Populustremula for drought tolerance. Plant Cell Tissue Organ Cult 84(1):56–68

    Article  Google Scholar 

  • Ruangrak E, Su X, Huang Z, Wang X, Guo Y, Du Y, Gao J (2018) Fine mapping of a major QTL controlling early flowering in tomato using QTL-seq. Can J Plant Sci 98(3):672–682

    Article  CAS  Google Scholar 

  • Saha P, Singh S, Bhatia R, Dey SS, Das Saha N, Ghoshal C et al (2022) Genomic designing for abiotic stress resistant brassica vegetable crops. In: Genomic designing for abiotic stress resistant vegetable crops. Springer, Cham, pp 153–185

    Chapter  Google Scholar 

  • Sahoo JP, Mohapatra U (2020) Plant signal transduction mechanism against abiotic and biotic stresses. https://doi.org/10.22271/ed.book.1027

  • Saidou AA, Clotault J, Couderc M, Mariac C, Devos KM, Thuillet AC, Amoukou IA, Vigouroux Y (2014) Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet. TheorAppl Genet 127(1):19–32

    Article  CAS  Google Scholar 

  • Satish Chhapekar S, Singh S, Singh S, Ma Y, Jeevan Rameneni J, Ryun Choi S, Pyo Lim Y (2022) Genomic Design for Biotic Stress Tolerance in vegetable brassicas. In: Genomic designing for biotic stress resistant vegetable crops. Springer, Cham, pp 189–231

    Chapter  Google Scholar 

  • Schrager-Lavelle A, Gath NN, Devisetty UK, Carrera E, López-Díaz I, Blázquez MA, Maloof JN (2019) The role of a class III gibberellin 2-oxidase in tomato internode elongation. The Plant J 97(3):603–615

    Article  CAS  Google Scholar 

  • Shang J, Li N, Li N, Xu Y, Ma S, Wang J (2016) Construction of a high-density genetic map for watermelon (Citrullus lanatus L.) based on large-scale SNP discovery by specific length amplified fragment sequencing (SLAF-seq). Sci Hortic 203:38–46

    Article  CAS  Google Scholar 

  • Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S, Gu W, Liu M (2014) Biosynthesis, regulation, and domestication of bitterness in cucumber. Sci 346(6213):1084–1088

    Article  CAS  Google Scholar 

  • Shu J, Liu Y, Zhang L, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H (2018) QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage. Theor Appl Genet 131(4):917–928

    Article  CAS  Google Scholar 

  • Solankey SS, Singh RK, Baranwal DK, Singh DK (2015) Genetic expression of tomato for heat and drought stress tolerance: an overview. Int J Veg Sci 21(5):496–515

    Article  Google Scholar 

  • Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ et al (2017) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169(6):1142–1155

    Article  CAS  Google Scholar 

  • Spaldon S, Samnotra RK, Chopra S (2015) Climate resilient technologies to meet the challenges in vegetable production. Int J Curr Res Aca Rev 3(2):28–47

    CAS  Google Scholar 

  • Subramanyam K, Sailaja KV, Subramanyam K, Rao DM, Lakshmidevi K (2011) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tissue Organ Cult 105(2):181–192

    Article  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183

    Article  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, De Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB (1992) High density molecular linkage maps of the tomato and potato genomes. Genet 132(4):1141–1160

    Article  CAS  Google Scholar 

  • Tian S, Jiang L, Cui X, Zhang J, Guo S, Li M, Zhang H, Ren Y, Gong G, Zong M, Liu F (2018) Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep 37(9):1353–1356

    Article  CAS  Google Scholar 

  • Tomlinson L, Yang Y, Emenecker R, Smoker M, Taylor J, Perkins S, Smith J, MacLean D, Olszewski NE, Jones JD (2019) Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnol J 17(1):132–140

    Article  CAS  Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682

    Article  CAS  Google Scholar 

  • Wang Y, Cai S, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy 11(11):2033–2047

    Article  CAS  Google Scholar 

  • Win KT, Zhang C, Silva RR, Lee JH, Kim YC, Lee S (2019) Identification of quantitative trait loci governing subgynoecy in cucumber. TheorAppl Genet 132(5):1505–1521

    Article  CAS  Google Scholar 

  • Xin T, Zhang Z, Li S, Zhang S, Li Q, Zhang ZH, Huang S, Yang X (2019) Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell 31(5):1063–1076

    Article  CAS  Google Scholar 

  • Xu H, Liu Q, Yao TFX (2014) Shedding light on integrative GA signaling. CurrOpin Plant Biol 21:89–95

    CAS  Google Scholar 

  • Xu L, Li T, Wu Z, Feng H, Yu M, Zhang X, Chen B (2018) Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. Appl Soil Ecol 125:213–221

    Article  Google Scholar 

  • Xu X, Chao J, Cheng X, Wang R, Sun B, Wang H, Luo S, Xu X, Wu T, Li Y (2016) Mapping of a novel race specific resistance gene to phytophthora root rot of pepper (Capsicum annuum) using bulked segregant analysis combined with specific length amplified fragment sequencing strategy. PLoS One 11(3):e0151401

    Article  Google Scholar 

  • Xu X, Lu L, Zhu B, Xu Q, Qi X, Chen X (2015a) QTL mapping of cucumber fruit flesh thickness by SLAF-seq. Sci Rep 5(1):1–9

    Google Scholar 

  • Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L, Xu Q, Qi X, Chen X (2015b) A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Front Plant Sci 5:768

    Article  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  Google Scholar 

  • Yan C, An G, Zhu T, Zhang W, Zhang L, Peng L, Chen J, Kuang H (2019) Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. TheorAppl Genet 132(4):895–906

    Article  CAS  Google Scholar 

  • Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow CD, Wen C, Zhang X, Weng Y (2018) LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. Plant J 95(5):834–847

    Article  CAS  Google Scholar 

  • Yang X, Li Y, Zhang W, He H, Pan J, Cai R (2014) Fine mapping of the uniform immature fruit color gene u in cucumber (Cucumis sativus L.). Euphytica 196(3):341–348

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22(5):559–565

    Article  CAS  Google Scholar 

  • Yu D, Gu X, Zhang S, Dong S, Miao H, Gebretsadik K, Bo K (2021) Molecular basis of heterosis and related breeding strategies reveal its importance in vegetable breeding. Horticul Res 8(1):120–120

    Article  Google Scholar 

  • Zahid G, Iftikhar S, Farooq MU, Soomro SA (2022) Advances in DNA based molecular markers for the improvement of fruit cultivars in Pakistan-a review. Sarhad J Agricult 38(3):812–832

    Article  Google Scholar 

  • Zhang H, Yi H, Wu M, Zhang Y, Zhang X, Li M, Wang G (2016) Mapping the flavor contributing traits on" Fengwei melon" (Cucumis melo L.) chromosomes using parent resequencing and super bulked-segregant analysis. PLoS One 11(2):e0148150

    Article  Google Scholar 

  • Zhang J, Zhao J, Xu Y, Liang J, Chang P, Yan F, Li M, Liang Y, Zou Z (2015) Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front Plant Sci 6:1042

    Article  Google Scholar 

  • Zhang N, Zhang H, Ren Y, Chen L, Zhang J, Zhang L (2019a) Genetic analysis and gene mapping of the orange flower trait in Chinese cabbage (Brassica rapa L.). Mol Breed 39(6):1–11

    Article  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33(2):403–409

    Article  CAS  Google Scholar 

  • Zhang XF, Wang GY, Dong TT, Chen B, Du HS, Li CB, Geng SS (2019b) High-density genetic map construction and QTL mapping of first flower node in pepper (Capsicum annuum L.). BMC Plant Biol 19(1):1–13

    Article  Google Scholar 

  • Zhao J, Sauvage C, Zhao J, Bitton F, Bauchet G, Liu D, Huang S, Tieman DM, Klee HJ, Causse M (2019) Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nat Commun 10(1):1–12

    Google Scholar 

  • Zhao T, Wu T, Pei T, Wang Z, Yang H, Jiang J, Zhang H, Chen X, Li J, Xu X (2021) Overexpression of SlGATA17 promotes drought tolerance in transgenic tomato plants by enhancing activation of the Phenylpropanoid biosynthetic pathway. Front Plant Sci 12

    Google Scholar 

  • Zhou Q, Wang S, Hu B, Chen H, Zhang Z, Huang S (2015) An accumulation and replication of chloroplasts 5 gene mutation confers light green peel in cucumber. J Integr Plant Biol 57(11):936–942

    Article  CAS  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33(11):1851–1863

    Article  CAS  Google Scholar 

  • Zhu WY, Huang L, Chen L, Yang JT, Wu JN, Qu ML, Yao DQ, Guo CL, Lian HL, He HL, Pan JS (2016) A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front Plant Sci 7:437

    Article  Google Scholar 

  • Zsögön A, ÄŒermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36(12):1211–1216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, J.P., Barik, S., Pathak, M., Tripathy, B., Pradhan, M. (2023). Improvement of Vegetables Through Molecular Breeding in Changing Climate Scenario. In: Solankey, S.S., Kumari, M. (eds) Advances in Research on Vegetable Production Under a Changing Climate Vol. 2. Advances in Olericulture. Springer, Cham. https://doi.org/10.1007/978-3-031-20840-9_13

Download citation

Publish with us

Policies and ethics